技术原理 为了系统性揭示RNA O8G氧化修饰,云序生物提供了成熟的 RNA O8G氧化MeRIP-Seq技术服务。技术原理如下:将RNA O8G氧化特异性抗体与被随机打断的RNA的片段进行共孵育,抓取有O8G氧化修饰的片段进行测序;同时需要平行测序一个对照(Input)样本,对照样本为未进行IP反应的RNA的片段。对照样本用于消除非特异性抓取O8G氧化片段的背景。对比免疫共沉淀IP样本和Input样本中的序列片段,将O8G氧化修饰位点定位到转录组上,并根据RNA-seq数据,计算样本中O8G氧化程度。 配合专业的生物信息学分析,云序生物可进一步提供高精度的O8G氧化图谱,帮助客户揭示O8G氧化在生物学功能和潜在的作用机制。比色法RNA甲基化定量检测试剂盒提供了定量检测总RNA甲基化水平的试剂。安徽甲基化检测
m5C RNA是近年来发现的一类在tRNA及rRNA高丰度存在的甲基化修饰。利用高通量测序手段验证了非编码RNA以及部分mRNA中m5C存在,但是在不同物种、不同组织中m5C修饰分布图谱尚没有系统性报道。云序生物率先开展m5C RNA甲基化测序服务,采用经典重亚硫 酸盐处理的方式进行测序。在全转录范围内及tRNA水平查看基因m5C甲基化修饰水平。 通过高通量测序和生物信息分析,识别甲基化富集的基因组区域。 富集峰识别后,得到的是一堆基因组位置信息,通过生物信息分析利用邻近基因对富集峰进行注释,并根据峰中点相对于已知基因的位置,将富集峰为启动子峰、上游峰、内含子峰、外显子峰、基因间峰。 DNA甲基化文章除了拟南芥,在其他植物中如番茄、小麦、玉米以及高粱等均发现了RNA m6A甲基化修饰。
案例1: m6Am 测序揭示了人类转录组中 m6Am 甲基化的动态性 原文:m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome 期刊:Nature Communication 影响因子:13.78 北京大学的研究人员开辟了一种新型的 m6Am 修饰 RNA 的测序方法,使用抗体拉取 5’ 帽子片段富集 m6Am 修饰的 RNA 区域,再在特定生化环境条件下使用 FTO 酶来区分 m6Am 与 m6A 修饰,进而可达到精细至单碱基水平的 m6Am RNA 测序。使用该方法对人类转录组测序的结果显示,m6Am 修饰的分布主要局限于 mRNA 5’ 帽子下游的翻译起始位点,并且多数具有 BCA 的序列 motif 特征(B=C/U/G)。对细胞施予热激、低氧等应激性刺激时,细胞转录组的 m6Am 水平有明显上升,说明 RNA 的 m6Am 动态修饰可能参与了细胞应激性反应。针对低氧环境刺激的进一步 GO 分析显示,m6Am 水平升高的基因与内质网应激调节的生物学过程有关。
原文:METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing 期刊:Necleic Acids Research 影响因子:16.48 新加坡南洋理工大学的研究人员通过人类全转录组 RNA 甲基化测序,在 Mettl4 敲除组与野生型对照组之间寻找出 m6Am 相对甲基化水平的差异位点,其中 U2 snRNA 的第 30 位 RNA 残基有明显的 m6Am 修饰水平差异。进一步的 FLAG-tag 融合蛋白实验证明,METTL4 蛋白直接催化了 U2 snRNA 上的 m6Am 甲基化修饰的发生。METTL4 过表达实验发现,其催化的 RNA 内部 m6Am 修饰位点具有 HMAGKD 的序列 motif 特征(H=A/C/U, M=A/C, K=G/U, D=A/G/U)。 在 Mettl4 敲除的人类细胞中,因为 U2 snRNA 无法完成 m6Am 修饰,故而对 snRNA 的 pre-mRNA 剪接功能产生了诸多影响。m6A甲基化主要通过减少IAP mRNA的半衰期而起作用。
mRNA m6Am-Exo-seq 测序服务 云序生物在国内首批引入 m6Am-Exo-seq 测序服务,利用 5’ 核酸外切酶消除非目的性的 RNA的片段上 m6A 修饰的信号干扰,选择性地获取 mRNA 5’ 帽子结构下游 m6Am 修饰富集区域的序列信息。对选择性获取到的 m6Am 修饰的 RNA的 片段进行反转录建库和高通量测序,可为后续的生物信息学分析提供丰富的数据,进而揭示差异性 m6Am 修饰位点的特征及其可能的生物学功能,为您的科研课题提供强劲的助力。 云序优势 一站式服务: 客户只需提供细胞、组织或RNA,云序生物为您完成从MeRIP富集,文库制备,上机测序到数据分析整套服务流程。 云序生物自2018年推出了超微量RNA甲基化测序。宁夏850KDNA甲基化
m7G RNA甲基化是在甲基化转移酶的作用下,使RNA鸟嘌呤(G)的第七位N上加上甲基的一种修饰。安徽甲基化检测
植物中m6A修饰的研究主要集中在拟南芥的生长发育上。然而,拟南芥是一种盐敏感模式植物。因此,有必要对m6A修饰在高耐盐作物的盐胁迫响应中的作用进行研究。甜高粱是一种能源和饲料作物,非常适合在盐碱地生长。探讨m6A在甜高粱中的修饰对阐明作物的耐盐机理具有重要意义。在本研究中,作者检测了在耐盐性不同的两个高粱基因型(耐盐的M-81E和盐敏感的Roma)中m6A的修饰。甜高粱在盐胁迫下的m6A修饰发生了剧烈的变化,特别是在Roma中,一些耐盐相关转录本的m6A修饰增加,导致mRNA稳定性增强,进而参与了甜高粱耐盐性的调控。虽然m6A修饰对甜高粱的耐盐性具有重要的调控作用,但其调控活性受初始m6A修饰水平的限制。安徽甲基化检测