案例1:m5C RNA甲基化调控mRNA出核新机制 原文:5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader 期刊:Cell Research 影响因子:15.60 中科院汪海林等研究团队揭示了m5C修饰在mRNA的分布图谱规律及其对调控mRNA出核作用新机制。研究人员建立了改进的RNA m5C单碱基分辨率高通量测序与生物信息分析技术,以此揭示mRNA m5C的分布规律,并绘制了精细的m5C修饰图谱,发现m5C在mRNA的翻译起始位点下游有明显富集,并且主要分布于CG富集区域。通过分析对比人和小鼠不同组织,发现m5C在mRNA上的分布特征在哺乳动物中十分保守,而在不同组织中修饰的基因具有特异性。研究团队同时发现,在小鼠睾丸发育过程中,动态的m5C修饰基因明显富集于精子发育相关功能,提示m5C修饰参与生殖发育调控。云序生物为您带来一种基于酶学方法的 DNA 甲基化测序技术 EM-seq。内蒙古m7G RNA甲基化
RNA 修饰在基因表达调控中扮演着非常重要的角色。m6A 修饰就是真核生物 mRNA 中较常见存在的一种修饰形式,得到了常见的关注和研究。除此之外,还存在着一种分子结构上非常相似的 RNA 修饰形式:m6Am——在 m6A 修饰的基础上,同一个腺苷酸残基的核糖的 2’ 羟基也被甲基化,产生 2’ 甲氧基结构(2’-O-CH3)。与 m6A 的常见分布所不同的是,m6Am 修饰的分布主要局限于 mRNA 5’ 帽子结构下游的较早核苷酸残基上发生。该位点的 m6Am 修饰在进化上高度保守,无论是在斑马鱼、小鼠还是人类细胞中均有发现。tRNA甲基化除了拟南芥,在其他植物中如番茄、小麦、玉米以及高粱等均发现了RNA m6A甲基化修饰。
RNA m6A甲基化是RNA较关键的内部修饰之一,是真核生物丰富和调节遗传信息的一种保守的转录后机制。m6A修饰具有多种生物学功能,如调控mRNA翻译、转录以及稳定性等。目前,已在多种植物中发现这种RNA修饰,参与调控不同植物的各方面生物学功能。其中,拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与m6A甲基化测序技术结合,证实到RNA甲基化普遍存在于拟南芥各个发育期,并揭示了RNA甲基化相关酶在特殊发育时期,如开花,叶片形成,种子发育,根部生长等过程中发挥重要作用。
云序特色 √ j较全产品线:可针对性地检测不同类型RNA分子的O8G氧化; √ 特异性高:特异性富集和检测O8G氧化的 RNA的片段; √ 全转录组覆盖:全转录组范围的RNA O8G氧化检测; √ 全物种检测:可以检测几乎任何动植物的O8G氧化; √ 专业化的生信分析:强大的生信团队,专业的O8G氧化数据分析; 产品分类 O8G 全转录组测序:同时检测O8G氧化的环状RNA,LncRNA和mRNA; O8G 环状RNA测序:检测O8G氧化的所有环状RNA; O8G LnRNA测序:同时检测O8G氧化的LncRNA和mRNA; O8G mRNA测序:检测O8G氧化的所有mRNA;m6A是真核生物mRNA上常见的一种转录后修饰。
案例1: m6Am 测序揭示了人类转录组中 m6Am 甲基化的动态性 原文:m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome 期刊:Nature Communication 影响因子:13.78 北京大学的研究人员开辟了一种新型的 m6Am 修饰 RNA 的测序方法,使用抗体拉取 5’ 帽子片段富集 m6Am 修饰的 RNA 区域,再在特定生化环境条件下使用 FTO 酶来区分 m6Am 与 m6A 修饰,进而可达到精细至单碱基水平的 m6Am RNA 测序。使用该方法对人类转录组测序的结果显示,m6Am 修饰的分布主要局限于 mRNA 5’ 帽子下游的翻译起始位点,并且多数具有 BCA 的序列 motif 特征(B=C/U/G)。对细胞施予热激、低氧等应激性刺激时,细胞转录组的 m6Am 水平有明显上升,说明 RNA 的 m6Am 动态修饰可能参与了细胞应激性反应。针对低氧环境刺激的进一步 GO 分析显示,m6Am 水平升高的基因与内质网应激调节的生物学过程有关。m5C RNA是近年来发现的一类在tRNA及rRNA高丰度存在的甲基化修饰。m7G RNA甲基化芯片
m6A在细胞加速mRNA代谢和翻译,以及在细胞分化、胚胎发育和压力应答等过程中起重要作用。内蒙古m7G RNA甲基化
原文:METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing 期刊:Necleic Acids Research 影响因子:16.48 新加坡南洋理工大学的研究人员通过人类全转录组 RNA 甲基化测序,在 Mettl4 敲除组与野生型对照组之间寻找出 m6Am 相对甲基化水平的差异位点,其中 U2 snRNA 的第 30 位 RNA 残基有明显的 m6Am 修饰水平差异。进一步的 FLAG-tag 融合蛋白实验证明,METTL4 蛋白直接催化了 U2 snRNA 上的 m6Am 甲基化修饰的发生。METTL4 过表达实验发现,其催化的 RNA 内部 m6Am 修饰位点具有 HMAGKD 的序列 motif 特征(H=A/C/U, M=A/C, K=G/U, D=A/G/U)。 在 Mettl4 敲除的人类细胞中,因为 U2 snRNA 无法完成 m6Am 修饰,故而对 snRNA 的 pre-mRNA 剪接功能产生了诸多影响。内蒙古m7G RNA甲基化