旋转陶瓷膜基本参数
  • 品牌
  • 领动
  • 型号
  • Pilot 系列、Scera 系列
  • 类型
  • 生产型过滤浓缩设备
  • 推动力
  • 加压式,离心力
  • 控制方式
  • 自动,半自动
  • 接触物料部分的材质
  • 陶瓷,耐蚀钢,塑料涂层
  • 更换方式
  • 可清洗
  • 适用对象
  • 食品用,酒类,化学药品,食品,水,涂料,污泥,药液,粉体、锂电添加剂、电解液、石墨烯、其他高浓高粘物料,烟雾,油,食用油
  • 工作连续性
  • 连续
  • 过滤精度
  • 超滤
  • 作用原理
  • 拦截过滤
  • 加工定制
  • 最高工作温度
  • 55
  • 适用领域
  • 化工、医药、环保、能源、食品饮料等
  • 有效过滤面积
  • 28
  • 外形尺寸
  • 3000×1200×2200
  • 产地
  • 江苏镇江
  • 样式
  • 盘式
  • 工作压力
  • 0.15
  • 适用粘度
  • 7
  • 是否跨境货源
  • 厂家
  • 江苏领动膜科技
  • 颜色
  • 不锈钢原色
旋转陶瓷膜企业商机

温敏性菌体类提纯浓缩,旋转陶瓷膜动态错流设备的适配性改造

低剪切与温控协同

旋转速率控制:

传统工业应用转速通常500~2000rpm,针对菌体物料降至100~300rpm,将膜表面剪切力控制在200~300Pa(通过流体力学模拟验证,如ANSYS计算显示300rpm时剪切速率<500s⁻¹)。

采用变频伺服电机,配合扭矩传感器实时监测,避免启动/停机时转速波动产生瞬时高剪切。

错流流速调控:

膜外侧料液错流速度降至0.5~1.0m/s(传统工艺1~2m/s),通过文丘里管设计降低流体湍流强度,同时采用椭圆截面流道减少涡流区(涡流剪切力可使局部剪切力骤升40%)。

温度控制模块:膜组件内置夹套式温控系统,通入25~30℃循环冷却水(温度波动≤±1℃),抵消旋转摩擦热(设备运行时膜面温升通常1~3℃);料液预处理阶段通过板式换热器预冷至28℃。

陶瓷膜材质与结构选型

膜孔径匹配:

菌体粒径通常1~10μm(如大肠杆菌1~3μm,酵母3~8μm),选用50~100nm孔径陶瓷膜(如α-Al₂O₃膜,截留分子量100~500kDa),既保证菌体截留率>99%,又降低膜面堵塞风险。

膜表面改性:

采用亲水性涂层(如TiO₂纳米层)降低膜面张力(接触角从60°降至30°以下),减少菌体吸附;粗糙度控制Ra<0.2μm,降低流体阻力与剪切力损耗。 开放式流道设计容纳浓粘物质,避免堵塞,达到粗滤精滤一体化。二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制

二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制,旋转陶瓷膜

旋转陶瓷膜技术以多孔陶瓷膜为关键分离介质,通过膜组件旋转与错流过滤的协同作用实现污染物高效分离。其关键原理是利用陶瓷膜的筛分效应(孔径0.1-10μm)截留水中悬浮颗粒、胶体及乳化油等污染物,同时借助旋转产生的离心力与剪切力优化分离过程。

关键机制体现在三方面:一是动态流场强化,膜组件旋转(500-2000r/min)形成的湍流破坏膜表面浓差极化层,使污染物难以沉积,膜通量较传统静态膜提升30%-50%;二是剪切力抗污染,高速旋转产生的剪切力可剥离已吸附的污染物,减少膜孔堵塞,延长运行周期;三是气液协同作用(若配合曝气),旋转过程将气泡切割为微尺度(5-50μm),增强气泡与污染物的碰撞吸附,提升浮选分离效率。

此外,陶瓷材料的耐酸碱、耐高温特性,使其可适配复杂水质条件下的化学清洗,保证长期稳定运行,这也是该技术在高难度污水处理中应用的关键优势。 二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制突破了传统膜分离技术的瓶颈,在高效性、节能性和适应性上展现出明显优势!

二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制,旋转陶瓷膜

粉体洗涤浓缩中动态错流旋转陶瓷膜技术应用的关键要点

动态错流旋转陶瓷膜应用于粉体洗涤浓缩,需围绕“防团聚、提效率、保纯度”关键目标,把控四大要点:

膜与工艺参数适配。根据粉体粒径(如纳米级、微米级)选0.01-1μm孔径陶瓷膜,避免膜孔堵塞或粉体流失;控制旋转转速300-600r/min(高黏度粉体取上限),产生强剪切力破除粉体团聚,错流速度1.8-3m/s、操作压力0.2-0.35MPa,平衡洗涤效率与能耗。

洗涤过程准确控制。采用“逆流多次洗涤”模式,洗涤液(如水、溶剂)与粉体浓缩液逆向接触,液固比控制在3:1-5:1,确保盐分、小分子杂质洗脱率超99%;实时监测透过液电导率,达标后切换至浓缩阶段,通过调控浓缩倍数(通常5-15倍),避免过度浓缩导致粉体黏壁。

防污染与清洗策略。预处理去除粉体中>10μm大颗粒,减少膜面划伤;运行中每2-4小时在线反冲1次(反冲压力0.1-0.12MPa,时间15s);污染后针对无机杂质用2%-3%柠檬酸、有机杂质用1.5%-2%NaOH溶液循环清洗40-60分钟,恢复膜通量。

系统密封性与安全性。设备接口采用食品级/医药级密封件(如氟橡胶),防止粉体泄漏或二次污染;若处理易燃易爆粉体(如某些医药中间体),需契合行业安全标准。

错流旋转陶瓷膜设备处理乳化油的关键原理

动态错流旋转陶瓷膜的工作原理基于以下技术优势:

动态错流与剪切效应

陶瓷膜组件高速旋转(转速通常1000~3000转/分钟),在膜表面形成强剪切流,明显降低浓差极化和滤饼层厚度,避免膜孔堵塞。

乳化油流体在离心力和剪切力作用下,油滴与杂质的运动轨迹被破坏,促进油滴聚结和杂质分离。

膜分离精度匹配

根据乳化油滴粒径(通常0.1~10μm)选择膜孔径:

微滤(MF)膜(孔径0.1~10μm):分离较大油滴及悬浮物。

超滤(UF)膜(孔径0.01~0.1μm):截留胶体态油滴、表面活性剂及大分子杂质。

陶瓷膜因耐污染、耐高温、化学稳定性强,更适合乳化油的复杂工况。

能量场协同作用

旋转产生的离心力场与压力场叠加,加速油滴向膜表面迁移,同时水相透过膜孔形成滤液,实现油相浓缩与水相净化。 旋转陶瓷膜动态错流设备通过 “低转速 + 温控 + 流场优化” 的协同策略,可解决温敏性菌体物料的失活与剪切破坏。

二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制,旋转陶瓷膜

旋转膜设备的纯化浓缩原理关键技术优势动态错流+旋转剪切力:通过膜组件高速旋转(1000-3000rpm)在膜面产生强剪切力,打破浓差极化层,防止颗粒/溶质在膜表面沉积,适用于高黏度、易团聚体系(如高浓度金属离子溶液、陶瓷粉体分散液)。精确分子量/粒径截留:根据物料特性选择膜孔径(如超滤膜截留分子量1000-10000Da,微滤膜孔径0.1-1μm),实现溶质与溶剂、杂质的高效分离。分离机制分类超滤(UF)/纳滤(NF):用于电解液溶质(LiPF₆、LiFSI)与溶剂的分离,截留溶质分子,透过液为纯溶剂(可回收)。微滤(MF)/无机陶瓷膜过滤:用于正极材料前驱体颗粒、陶瓷填料的浓缩与洗滤,截留颗粒,透过液为含杂质的水相(可循环处理)。 离心力与剪切力清理膜面杂质,膜使用寿命延长 2-5 年。广东靠谱的旋转陶瓷膜实验型设备

替代滤芯减少固废,替代离心机避免漏料!二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制

在填料基材、锂电相关材料(如正极材料前驱体、电解液溶质、电池级溶剂等)的纯化浓缩过程中,旋转膜设备(尤其是动态错流旋转陶瓷膜 / 有机膜设备)凭借抗污染、高剪切力分散浓差极化等特性,可实现高效分离与精制。

旋转膜设备在填料基材与锂电材料的纯化浓缩中,通过动态错流与旋转剪切力的协同作用,解决了高黏度、易污染体系的分离难题,尤其适用于电池级材料的高纯度要求。从正极前驱体到电解液溶质,该技术已实现从实验室到工业化的应用突破,未来随着锂电材料向高镍、高电压方向发展,旋转膜技术在杂质控制、溶剂回收等领域的优势将进一步凸显,成为锂电材料绿色制造的关键工艺之一。    二维材料(石墨烯)浓缩中动态错流旋转陶瓷膜设备定制

与旋转陶瓷膜相关的**
信息来源于互联网 本站不为信息真实性负责