脂质体的粒径和粒径分布脂质体的整个药代动⼒学过程,如全⾝循环和MPS***、外渗到组织间质、细胞外基质间质运输以及细胞摄取和细胞内运输,都是依赖于尺⼨的。粒径<200nm的颗粒可降低⾎清蛋⽩的调理作⽤,降低MPS的***率。在⼩⿏⽩⾎病模型中,对于Myocet来说,较⼩的脂质体具有更⾼的抗**功效和增加的平均⽣存时间。粒径为2.0-3.5µm的Mepact可促使单核细胞/巨噬细胞吞噬,触发*****的免疫调节作⽤。Singh等⼈发现,含有不同颗粒⼤⼩的佐剂脂质体(ArmyLiposomeFormulation,ALF)的疫苗会产⽣不同的免疫反应,即树突状细胞更有效地摄取10-200nm范围内的⼩颗粒,⽽其他免疫细胞,如巨噬细胞,则倾向于吞噬⼤颗粒。Niu等⼈研究了⼝服给药的胰岛素负载脂质体,发现直径为150nm和400nm的脂质体表现出较慢且持续时间⻓达24⼩时的降糖作⽤,⽽粒径约为80nm和2µm的脂质体则分别表现出短暂且⽆药理作⽤。文献表明,对于*****的脂质体来说,小于200nm的脂质囊泡大小可以从物理肝脏筛选过程中逃逸。根据肝窦的大小,需要小于150nm的囊泡才能通过高渗透性的**血管穿透到恶性组织中。因此,它是由增强的渗透率(EPR)效应控制的,这有助于脂质体通过被动靶向在**中积累。脂质体载药系统在提高药物包封率和稳定性方面有诸多技术创新点。浙江脂质体载药报价
脂质体用于**的***LNPs在药物递送中的比较大单一应用是*****,因为LNPs包被抗**药物比游离药物具有更好的生物利用度和选择性。脂质纳米载体降低了***药物对正常组织的毒性,增加了疏水药物的水溶性,延长了药物停留时间,改善了对药物释放的控制。LNPs还通过增强通透性和滞留性(EPR)效应提高*****的疗效。**中快速但有缺陷的血管生成导致血管具有大开孔(>100nm大小),LNP可以很容易地通过。因此,**血管对LNPs的渗透性更强,允许它们在静脉注射时选择性地在**中积累。此外,****能失调的淋巴引流降低了LNPs离开**的速度,从而提高了它们的保留。由于EPR效应,LNPs在**中的积累允许纳米颗粒选择性地在肿瘤细胞附近释放抗**药物。Doxil是**早获批的***纳米制剂,也是**早获批的脂质体药物。该制剂旨在改善蒽环类药物阿霉素的药代动力学和生物分布,阿霉素是一种***药物***剂,但对心脏有毒。Doxil利用EPR,使用空间稳定的纳米颗粒(~100nm)来延长人血浆中的循环时间,同时降低阿霉素的心脏毒性。它被开发为静脉注射药物,用于***晚期卵巢*、多发性骨髓瘤和hiv相关的卡波西肉瘤。用于Doxil的LNPs由氢化大豆磷脂酰胆碱胆固醇和dspe-peg2000组成。浙江脂质体载药报价脂质体具有生物相容性好、无免疫原性、表面易功能化等优点。
脂质体制备方法:溶剂注射技术这种技术是将脂质物质和亲脂物质溶解在与⽔混溶的有机溶剂中,然后将有机相注⼊⼤量的⽔缓冲液中,从⽽⾃发形成⼩的单层脂质体。在其他改进的⽅法中,通过管状(例如Shirasu多孔玻璃膜或中空纤维结构)中的y型连接器和膜接触器注⼊/注⼊两流溶液装置,以改善有机相与⽔相的微混合。溶剂在⽔相介质中迅速扩散,界⾯湍流导致⼩⽽均匀的脂质体形成。根据制备条件的不同,可以制备80nm⾄300nm之间的粒径,并且不需要额外的能量输⼊来减⼩粒径,例如超声和挤压。应使⽤蒸发、冻⼲、透析或滤除有机溶剂,并将脂质体悬浮液浓缩⾄所需体积。⼄醇由于其安全性,通常被⽤作有机溶剂。各种制备参数,包括流速、溶剂和⽔溶液的温度、脂质浓度以及搅拌速率,都会影响颗粒的性质。Arikayce采⽤“⼄醇输注”或“在线输注”的⽅法制备阿⽶卡星脂质体。通过y型连接器和在线混合器将**少量的脂质⼄醇溶液和硫酸阿⽶卡星⽔溶液混合,形成纳⽶级的阿⽶卡星脂质体。
利用微流体装置,通过精确控制流体的流动和混合,实现脂质体的制备。例如,基于液滴射击和尺寸过滤(DSSF)的3D打印微毛细管微流体装置,可以同时形成和封装脂质体及各种细胞模拟腔化学物质。优势:这种方法可以精确控制脂质体的尺寸和组成,制备出高度均匀的脂质体。在“LiposomePreparationby3D-PrintedMicrocapillary-BasedApparatus”中详细介绍了这种方法的应用。通过Box-Behnkendesign等响应面优化方法,以包封率等为评价指标,优化脂质体的制备工艺参数。示例:在“菊苣酸脂质体制备工艺研究”中,采用薄膜分散-超声法制备菊苣酸脂质体,以包封率为评价指标,采用Box-Behnkendesign响应面优化法优化制备工艺参数。结果显示比较好制备工艺为磷脂与胆固醇的质量比为4.20:1,磷脂与药物的质量比为11.44:1,超声时间为6.54min6。采用薄膜水化法制备益生菌脂质体(Pro-lips),以益生菌的包封率为评价指标,通过单因素试验,优化Pro-lips的制备工艺。结果:Pro-lips的比较好原料配比为益生菌、大豆卵磷脂、胆固醇的质量比为1:12:2,药物浓度1.5mg/mL;比较好制备工艺为45℃成膜,200w超声15min,60℃水合2h。所得Pro-lips呈淡黄色乳光,粒子呈类球形,分布均匀无黏连。脂质体药物作为一种新型药物载体,在制备方法、临床应用、成像技术相互作用等方面取得了明显的研究进展。
选择合适赋形剂改善口服生物利用度为了开发脂质体制剂以改善1-谷胱甘肽(GSH)的口服生物利用度,使用颗粒法制备了载有GSH的脂质体。选择甘露醇作为有效赋形剂,以达到所需的粒径、包封率和**终制剂口服给药的溶解度。在大鼠中进行的口服生物利用度研究表明,阳性脂质体制剂的生物利用度分别比阴性脂质体、市售胶囊制剂和纯GSH高1418。合适的赋形剂能够改善脂质体的物理性质,提高药物的稳定性和溶解度,从而增强口服生物利用度。四、纳米技术增强药物稳定性和生物利用度开发载有拉洛昔芬(RLX)的脂质体-石墨烯纳米片,通过优化配方设计,提高了RLX的溶解和生物利用度。优化后的制剂在24小时内表现出延长的释放,可降低药物的剂量相关毒性,并在体外对A549细胞系表现出***的细胞毒性,在肺****中具有潜在应用价值15。纳米技术的应用可以改善药物的稳定性和靶向性,提高生物利用度。修饰脂质体实现靶向给药。广东脂质体载药DNA
生物表面活性剂甘油单酯脂质 A(MEL-A)对壳聚糖涂层脂质体的影响。浙江脂质体载药报价
脂质体靶向递送中**核靶向功能已知**具有核靶向功能。为了增强质粒DNA的核转运,**与PAMAM树状大分子偶联,与DOPE(1:1)混合形成脂质体。与聚亚胺相比,PAMAM-**/DOPE阳离子脂质体增强了HEK293细胞中质粒DNA的表达,并显示出较低的细胞毒性(m.w.25,000)。总的来说,靶向配体的修饰可以帮助实现特异性靶向,避免非特异性分布到肝脏和其他组织。然而,从商业化的角度来看,配体定制技术仍然面临许多障碍,包括需要更流线型的制造工艺和改进的质量控制。浙江脂质体载药报价