广东省科学院半导体研究所在反应磁控溅射领域的工艺优化成果 ,尤其在化合物薄膜制备中形成技术特色。针对传统反应溅射中靶材 “中毒” 导致的沉积速率骤降问题,团队采用脉冲磁控溅射技术,通过优化脉冲频率与占空比,平衡了靶材溅射与表面反应速率。以 Al₂O₃绝缘薄膜制备为例,通过精确控制磁控溅射的氧气流量与溅射功率比例,使薄膜介电常数达到 9.2,漏电流密度低于 10⁻⁹ A/cm²。该技术已成功应用于半导体器件的钝化层制备,使器件击穿电压提升 20%,可靠性 增强。通过与其他技术的结合,如脉冲激光沉积和分子束外延,可以进一步优化薄膜的结构和性能。上海磁控溅射哪家有

操作人员是磁控溅射设备运行和维护的主体,其操作技能和安全意识直接影响到设备的运行效率和安全性。因此,应定期对操作人员进行培训,提高他们的操作技能和安全意识。培训内容应包括设备的基本操作、维护保养要点、紧急处理措施等。同时,应强调安全操作规程,确保操作人员在操作过程中严格遵守安全规定,避免发生意外事故。随着科技的进步和磁控溅射技术的不断发展,一些先进技术被引入到磁控溅射设备的维护和保养中,以提高设备的稳定性和可靠性。例如,采用智能监控系统对设备的运行状态进行实时监测,一旦发现异常立即报警并采取相应的处理措施;采用先进的清洗技术和材料,提高设备的清洁度和使用寿命;采用自动化和智能化技术,减少人工操作带来的误差和安全隐患。海南直流磁控溅射特点磁控溅射是利用磁场束缚电子的运动,提高电子的离化率。

磁控溅射是一种常用的薄膜制备技术,其操作流程主要包括以下几个步骤:1.准备工作:首先需要准备好目标材料、基底材料、磁控溅射设备和相关工具。2.清洗基底:将基底材料进行清洗,以去除表面的杂质和污染物,保证基底表面的平整度和光洁度。3.安装目标材料:将目标材料固定在磁控溅射设备的靶材架上,并将靶材架安装在溅射室内。4.抽真空:将溅射室内的空气抽出,以达到高真空状态,避免气体分子对溅射过程的干扰。5.磁控溅射:通过加热靶材,使其表面发生溅射,将目标材料的原子或分子沉积在基底表面上,形成薄膜。6.结束溅射:当目标材料的溅射量达到预定值时,停止加热靶材,结束溅射过程。7.取出基底:将基底材料从溅射室内取出,进行后续处理,如退火、表面处理等。总之,磁控溅射的操作流程需要严格控制各个环节,以保证薄膜的质量和稳定性
广东省科学院半导体研究所在高功率脉冲磁控溅射(HiPIMS)技术的国产化应用中取得突破。其开发的 HiPIMS 系统峰值功率密度达到 10⁷ W/m²,使金属靶材的离化率提升至 70% 以上,制备的(Cr,Al)N 涂层硬度较传统直流磁控溅射提升两倍多,表面粗糙度降低至 0.5nm 以下。通过引入双极性脉冲电源,解决了绝缘涂层沉积中的电荷积累问题,实现了 Al₂O₃绝缘膜的高质量沉积。该技术已应用于精密刀具镀膜,使刀具加工铝合金的寿命延长 5 倍以上。针对磁控溅射的靶材利用率低问题,研究所开发了旋转磁控溅射与磁场动态调整相结合的技术方案。通过驱动靶材旋转与磁芯位置的实时调节,使靶材表面的溅射蚀坑从传统的环形分布变为均匀消耗,利用率从 40% 提升至 75%。配套设计的靶材冷却系统有效控制了溅射过程中的靶材温升,避免了高温导致的靶材变形。该技术已应用于 ITO 靶材的溅射生产,单靶材的镀膜面积从 100m² 提升至 200m², 降低了透明导电膜的制备成本。磁控溅射过程中,需要避免溅射过程中的放电和短路现象。

研究所对磁控溅射的等离子体调控机制开展了系统性研究,开发了基于辉光光谱的实时反馈控制系统。该系统首先通过测试靶材的纵向沉积膜厚度分布,预调整磁芯磁场强度分布以获得预设离子浓度;溅射过程中则实时监测靶材表面离子与气体离子的比例关系,通过调节反应气体流量与磁场分布进行动态补偿。这种闭环控制策略有效解决了靶材消耗导致的磁场偏移问题,使薄膜成分均匀性误差控制在 3% 以内。相较于传统人工调整模式,该系统不仅将工艺稳定性提升 60%,更使薄膜批次一致性达到半导体器件量产标准。磁控溅射制备的薄膜可以用于制备磁记录材料和磁光材料。上海磁控溅射哪家有
磁控溅射制备的薄膜可以用于制备微电子器件和光电子集成器件。上海磁控溅射哪家有
磁控溅射制备薄膜应用于哪些领域?在航空航天领域,磁控溅射技术被普遍应用于制备耐磨、耐腐蚀、抗刮伤等功能薄膜,提高航空航天器件的性能和使用寿命。例如,在航空发动机叶片、涡轮盘等关键零部件上,通过磁控溅射技术可以镀制高温抗氧化膜、热障涂层等,提高零部件的耐高温性能和抗腐蚀性能,延长发动机的使用寿命。此外,磁控溅射技术还可以用于制备卫星和航天器上的导电膜、反射膜等功能性薄膜,满足航空航天器件对性能的特殊要求。上海磁控溅射哪家有