ITMALL.sale 是一家专业的 H100 GPU 代理商,以其质量的服务和高质量的产品赢得了广大客户的信赖。作为 NVIDIA 官方授权的代理商,ITMALL.sale 提供全系列的 H100 GPU 产品,确保客户能够获得、质量的图形处理器。无论是企业级应用还是个人用户,ITMALL.sale 都能够提供个性化的解决方案,满足不同客户的需求。ITMALL.sale 不仅提供产品销售,还为客户提供的技术支持和售后服务,确保客户在使用 H100 GPU 过程中无后顾之忧。此外,ITMALL.sale 还通过定期举办技术交流会和培训,帮助客户更好地了解和使用 H100 GPU 产品。ITMALL.sale 以其专业的技术团队和丰富的行业经验,为客户提供质量的服务,赢得了良好的市场口碑。H100 GPU 提供高效的 GPU 直连技术。重庆英伟达H100GPU
它可能每年产生$500mm++的经常性收入。ChatGPT运行在GPT-4和API上。GPT-4和API需要GPU才能运行。很多。OpenAI希望为ChatGPT及其API发布更多功能,但他们不能,因为他们无法访问足够的GPU。他们通过Microsoft/Azure购买了很多NvidiaGPU。具体来说,他们想要的GPU是NvidiaH100GPU。为了制造H100SXMGPU,Nvidia使用台积电进行制造,并使用台积电的CoWoS封装技术,并使用主要来自SK海力士的HBM3。OpenAI并不是***一家想要GPU的公司(但他们是产品市场契合度强的公司)。其他公司也希望训练大型AI模型。其中一些用例是有意义的,但有些用例更多的是驱动的,不太可能使产品与市场契合。这推高了需求。此外,一些公司担心将来无法访问GPU,因此即使他们还不需要它们,他们现在也会下订单。因此,“对供应短缺的预期会造成更多的供应短缺”正在发生。GPU需求的另一个主要贡献者来自想要创建新的LLM的公司。以下是关于想要构建新LLM的公司对GPU需求的故事:公司高管或创始人知道人工智能领域有很大的机会。也许他们是一家想要在自己的数据上训练LLM并在外部使用它或出售访问权限的企业,或者他们是一家想要构建LLM并出售访问权限的初创公司。他们知道他们需要GPU来训练大型模型。河南H100GPU stockH100 GPU 采用先进的风冷和液冷混合散热设计。
H100GPU架构细节异步GPUH100扩展了A100在所有地址空间的全局共享异步传输,并增加了对张量内存访问模式的支持。它使应用程序能够构建端到端的异步管道,将数据移入和移出芯片,完全重叠和隐藏带有计算的数据移动。CUDA线程只需要少量的CUDA线程来管理H100的全部内存带宽其他大多数CUDA线程可以专注于通用计算,例如新一代TensorCores的预处理和后处理数据。扩展了层次结构,增加了一个称为线程块集群(ThreadBlockCluster)的新模块,集群(Cluster)是一组线程块(ThreadBlock),保证线程可以被并发调度,从而实现跨多个SM的线程之间的**协作和数据共享。集群还能更有效地协同驱动异步单元,如张量内存***(TensorMemoryAccelerator)和张量NVIDIA的异步事务屏障(“AsynchronousTransactionBarrier”)使集群中的通用CUDA线程和片上***能够有效地同步,即使它们驻留在单独的SM上。所有这些新特性使得每个用户和应用程序都可以在任何时候充分利用它们的H100GPU的所有单元,使得H100成为迄今为止功能强大、可编程性强、能效高的GPU。组成多个GPU处理集群(GPUProcessingClusters,GPCs)TextureProcessingClusters(TPCs)流式多处理器(StreamingMultiprocessors。
H100GPU是英伟达推出的一款高性能图形处理器,专为满足当今数据密集型计算任务的需求而设计。它采用了的架构,具备超高的计算能力和能效比,能够提升各种计算任务的效率和速度。无论是在人工智能、科学计算还是大数据分析领域,H100GPU都能提供的性能和可靠性。其强大的并行处理能力和高带宽内存确保了复杂任务的顺利进行,是各类高性能计算应用的。H100GPU拥有先进的散热设计,确保其在长时间高负荷运行时依然能够保持稳定和高效。对于需要长时间运行的大规模计算任务来说,H100GPU的可靠性和稳定性尤为重要。它的设计不仅考虑了性能,还兼顾了散热和能效,使其在保持高性能的同时,依然能够节省能源成本。无论是企业级应用还是科学研究,H100GPU都能够为用户提供持续的高性能支持。在人工智能应用中,H100GPU的强大计算能力尤为突出。它能够快速处理大量复杂的模型训练和推理任务,大幅缩短开发时间。H100GPU的并行计算能力和高带宽内存使其能够处理更大规模的数据集和更复杂的模型结构,提升了AI模型的训练效率和准确性。此外,H100GPU的高能效比和稳定性也为企业和研究机构节省了运营成本,是人工智能开发的理想选择。H100 GPU 提供高效的计算资源利用率。
提供了1exaFLOP的FP8稀疏AI计算性能。同时支持无线带宽(InifiniBand,IB)和NVLINKSwitch网络选项。HGXH100通过NVLink和NVSwitch提供的高速互连,HGXH100将多个H100结合起来,使其能创建世界上强大的可扩展服务器。HGXH100可作为服务器构建模块,以集成底板的形式在4个或8个H100GPU配置中使用。H100CNXConvergedAcceleratorNVIDIAH100CNX将NVIDIAH100GPU的强大功能与NVIDIA®ConnectX-7SmartNIC的**组网能力相结合,可提供高达400Gb/s的带宽包括NVIDIAASAP2(加速交换和分组处理)等创新功能,以及用于TLS/IPsec/MACsec加密/的在线硬件加速。这种独特的架构为GPU驱动的I/O密集型工作负载提供了前所未有的性能,如在企业数据中心进行分布式AI训练,或在边缘进行5G信号处理等。H100GPU架构细节异步GPUH100扩展了A100在所有地址空间的全局共享异步传输,并增加了对张量内存访问模式的支持。它使应用程序能够构建端到端的异步管道,将数据移入和移出芯片,完全重叠和隐藏带有计算的数据移动。CUDA线程只需要少量的CUDA线程来管理H100的全部内存带宽其他大多数CUDA线程可以专注于通用计算,例如新一代TensorCores的预处理和后处理数据。扩展了层次结构。H100 GPU 的基础时钟频率为 1410 MHz。深圳NvdiaH100GPU
H100 GPU 优惠直降,数量有限。重庆英伟达H100GPU
L2CacheHBM3内存控制器GH100GPU的完整实现8GPUs9TPCs/GPU(共72TPCs)2SMs/TPC(共144SMs)128FP32CUDA/SM4个第四代张量/SM6HBM3/HBM2e堆栈,12个512位内存控制器60MBL2Cache第四代NVLink和PCIeGen5H100SM架构引入FP8新的Transformer引擎新的DPX指令H100张量架构专门用于矩阵乘和累加(MMA)数学运算的高性能计算,为AI和HPC应用提供了开创性的性能。H100中新的第四代TensorCore架构提供了每SM的原始稠密和稀疏矩阵数学吞吐量的两倍支持FP8、FP16、BF16、TF32、FP64、INT8等MMA数据类型。新的TensorCores还具有更**的数据管理,节省了高达30%的操作数交付能力。FP8数据格式与FP16相比,FP8的数据存储需求减半,吞吐量提高一倍。新的TransformerEngine(在下面的章节中进行阐述)同时使用FP8和FP16两种精度,以减少内存占用和提高性能,同时对大型语言和其他模型仍然保持精度。用于加速动态规划(“DynamicProgramming”)的DPX指令新引入的DPX指令为许多DP算法的内循环提供了高等融合操作数的支持,使得动态规划算法的性能相比于AmpereGPU高提升了7倍。L1数据cache和共享内存结合将L1数据cache和共享内存功能合并到单个内存块中简化了编程。重庆英伟达H100GPU