利用 NVIDIA H100 Tensor GPU,提供所有工作负载前所未有的效能、可扩展性和安全性。 使用 NVIDIA® NVLink® Switch 系统,比较高可连接 256 个 H100 来加速百万兆级工作负载,此外还有的 Transformer Engine,可解决一兆参数语言模型。 H100 所结合的技术创新,可加速大型语言模型速度,比前一代快上 30 倍,提供业界的对话式人工智能。英伟达 DGX SuperPOD架构采用英伟达的NVLink和NVSwitch系统,多可连接32个DGX节点,共256个H100 GPU。这是一个真正的人工智能基础设施平台;英伟达的DGX SuperPOD数据中心设计[4]让我们对真正的企业人工智能基础设施的巨大功率和冷却需求有了一些了解。H100 GPU 支持 Tensor Core 技术。russia超微H100GPU
H100中新的第四代TensorCore架构提供了每SM的原始稠密和稀疏矩阵数学吞吐量的两倍支持FP8、FP16、BF16、TF32、FP64、INT8等MMA数据类型。新的TensorCores还具有更**的数据管理,节省了高达30%的操作数交付能力。FP8数据格式与FP16相比,FP8的数据存储需求减半,吞吐量提高一倍。新的TransformerEngine(在下面的章节中进行阐述)同时使用FP8和FP16两种精度,以减少内存占用和提高性能,同时对大型语言和其他模型仍然保持精度。用于加速动态规划(“DynamicProgramming”)的DPX指令新引入的DPX指令为许多DP算法的内循环提供了高等融合操作数的支持,使得动态规划算法的性能相比于AmpereGPU高提升了7倍。L1数据cache和共享内存结合将L1数据cache和共享内存功能合并到单个内存块中简化了编程,减少了达到峰值或接近峰值应用性能所需的调优;为这两种类型的内存访问提供了佳的综合性能。H100GPU层次结构和异步性改进关键数据局部性:将程序数据尽可能的靠近执行单元异步执行:寻找的任务与内存传输和其他事物重叠。目标是使GPU中的所有单元都能得到充分利用。线程块集群(ThreadBlockClusters)提出背景:线程块包含多个线程并发运行在单个SM上。russia超微H100GPUH100 GPU 的增强时钟频率可达 1665 MHz。
第四代NVIDIANVLink在全归约操作上提供了3倍的带宽提升,在7倍PCIeGen5带宽下,为多GPUIO提供了900GB/sec的总带宽,比上一代NVLink增加了50%的总带宽。第三代NVSwitch技术包括驻留在节点内部和外部的交换机,用于连接服务器、集群和数据中心环境中的多个GPU。节点内部的每个NVSwitch提供64个第四代NVLink链路端口,以加速多GPU连接。交换机的总吞吐率从上一代的。新的第三代NVSwitch技术也为多播和NVIDIASHARP网络内精简的集群操作提供了硬件加速。新的NVLinkSwitch系统互连技术和新的基于第三代NVSwitch技术的第二级NVLink交换机引入地址空间隔离和保护,使得多达32个节点或256个GPU可以通过NVLink以2:1的锥形胖树拓扑连接。这些相连的节点能够提供TB/sec的全连接带宽,并且能够提供难以置信的一个exaFlop(百亿亿次浮点运算)的FP8稀疏AI计算。PCIeGen5提供了128GB/sec的总带宽(各个方向上为64GB/s),而Gen4PCIe提供了64GB/sec的总带宽(各个方向上为32GB/sec)。PCIeGen5使H100可以与性能高的x86CPU和SmartNICs/DPU(数据处理单元)接口。
在浮点计算能力方面,H100 GPU 也表现出色。其单精度浮点计算能力(FP32)达到 19.5 TFLOPS,双精度浮点计算能力(FP64)达到 9.7 TFLOPS,适用于科学计算、工程仿真和金融建模等高精度计算需求的应用。此外,H100 GPU 还支持 Tensor Core 技术,其 Tensor Core 性能可达 312 TFLOPS,特别适合深度学习和神经网络训练等需要大量矩阵运算的任务,极大地提升了计算效率。H100 GPU 配备了 80GB 的 HBM2e 高带宽内存,带宽高达 1.6 TB/s,这使得其在处理大规模数据集时能够快速读写数据,减少数据传输的瓶颈。高带宽内存不仅提升了数据传输效率,还确保了 GPU 在处理复杂计算任务时的高效性和稳定性。对于需要处理大量数据的应用,如大数据分析和人工智能训练,H100 GPU 的大容量和高带宽内存无疑是一个巨大的优势。H100 GPU 支持气候模拟计算任务。
基于H100的系统和板卡H100SXM5GPU使用NVIDIA定制的SXM5板卡内置H100GPU和HMB3内存堆栈提供第四代NVLink和PCIeGen5连接提供高的应用性能这种配置非常适合在一个服务器和跨服务器的情况下将应用程序扩展到多个GPU上的客户,通过在HGXH100服务器板卡上配置4-GPU和8-GPU实现4-GPU配置:包括GPU之间的点对点NVLink连接,并在服务器中提供更高的CPU-GPU比率;8-GPU配置:包括NVSwitch,以提供SHARP在网络中的缩减和任意对GPU之间900GB/s的完整NVLink带宽。H100SXM5GPU还被用于功能强大的新型DGXH100服务器和DGXSuperPOD系统中。H100PCIeGen5GPU以有350W的热设计功耗(ThermalDesignPower,TDP),提供了H100SXM5GPU的全部能力该配置可选择性地使用NVLink桥以600GB/s的带宽连接多达两个GPU,接近PCIeGen5的5倍。H100PCIe非常适合主流加速服务器(使用标准的架构,提供更低服务器功耗),为同时扩展到1或2个GPU的应用提供了很好的性能,包括AIInference和一些HPC应用。在10个前列数据分析、AI和HPC应用程序的数据集中,单个H100PCIeGPU**地提供了H100SXM5GPU的65%的交付性能,同时消耗了50%的功耗。DGXH100andDGXSuperPODNVIDIADGXH100是一个通用的高性能人工智能系统。H100 GPU 提供 312 TFLOPS 的 Tensor Core 性能。TaiwanH100GPU stock
H100 GPU 适用于企业级应用。russia超微H100GPU
H100 GPU 在边缘计算中的应用也非常多。其高性能计算能力和低功耗设计使其非常适合用于边缘计算。H100 GPU 的强大并行处理能力可以高效处理实时数据,提升应用的响应速度和可靠性。无论是在智能制造、智慧城市还是物联网应用中,H100 GPU 都能提升数据处理效率,满足边缘计算的需求。其紧凑设计和高能效比为边缘计算设备提供了理想的硬件支持,是边缘计算领域的重要组成部分。
在游戏开发领域,H100 GPU 提供了强大的图形处理能力和计算性能。它能够实现复杂和逼真的游戏画面,提高游戏的视觉效果和玩家体验。H100 GPU 的并行处理单元可以高效处理大量图形和物理运算,减少延迟和卡顿现象。对于开发者来说,H100 GPU 的稳定性和高能效为长时间的开发和测试提供了可靠保障,助力开发者创造出更具创意和吸引力的游戏作品,是游戏开发的理想选择。 russia超微H100GPU