脂质体载药相关图片
  • 南京脂质体载药技术服务公司,脂质体载药
  • 南京脂质体载药技术服务公司,脂质体载药
  • 南京脂质体载药技术服务公司,脂质体载药
脂质体载药基本参数
  • 品牌
  • 星叶生物,US-star,Gemate
  • 型号
  • 定制
  • 产地
  • 南京
  • 是否定制
脂质体载药企业商机

脂质体的粒径和粒径分布脂质体的整个药代动⼒学过程,如全⾝循环和MPS***、外渗到组织间质、细胞外基质间质运输以及细胞摄取和细胞内运输,都是依赖于尺⼨的。粒径<200nm的颗粒可降低⾎清蛋⽩的调理作⽤,降低MPS的***率。在⼩⿏⽩⾎病模型中,对于Myocet来说,较⼩的脂质体具有更⾼的抗**功效和增加的平均⽣存时间。粒径为2.0-3.5µm的Mepact可促使单核细胞/巨噬细胞吞噬,触发*****的免疫调节作⽤。Singh等⼈发现,含有不同颗粒⼤⼩的佐剂脂质体(ArmyLiposomeFormulation,ALF)的疫苗会产⽣不同的免疫反应,即树突状细胞更有效地摄取10-200nm范围内的⼩颗粒,⽽其他免疫细胞,如巨噬细胞,则倾向于吞噬⼤颗粒。Niu等⼈研究了⼝服给药的胰岛素负载脂质体,发现直径为150nm和400nm的脂质体表现出较慢且持续时间⻓达24⼩时的降糖作⽤,⽽粒径约为80nm和2µm的脂质体则分别表现出短暂且⽆药理作⽤。文献表明,对于*****的脂质体来说,小于200nm的脂质囊泡大小可以从物理肝脏筛选过程中逃逸。根据肝窦的大小,需要小于150nm的囊泡才能通过高渗透性的**血管穿透到恶性组织中。因此,它是由增强的渗透率(EPR)效应控制的,这有助于脂质体通过被动靶向在**中积累。一些常用于标记脂质体的荧光染料包括:DiO、DiI、Rhodamine PE、NBD、BODIPY、Cy3和Cy5等。南京脂质体载药技术服务公司

南京脂质体载药技术服务公司,脂质体载药

脂质体的相变温度双层膜的相变温度是脂质体产⽣、储存过程中的稳定性和体内药物释放的关键参数。关于相变的⼤量研究已经完成。⽔合脂质双分⼦层表现出三种层状形式:晶体相(LC)、固体凝胶相(Lβ)和液晶相(Lα)。在⽚层凝胶相中,酰基链优先排列成全反式构象,横向扩散⾮常缓慢。在Tc的转变温度下冷却,⽚层由凝胶相转变为LC相。LC⼜称亚凝胶相;烃链呈完全延伸的全反式构象,极性头基相对不动。在从凝胶相过渡到LC之间,可能会发⽣亚稳前体SGII相(也称为亚亚凝胶)或LR1相。将温度加热到Tm(熔融转变温度)以上,膜由有序态(凝胶态)转变为相对⽆序态(Lα),烃链呈现快速的反式间扭式波动,导致膜的通透性增加,药物分⼦很容易穿过膜。通常,需要⽐⽣理温度(37℃)更⾼的Tm。这样药物分⼦穿过膜凝胶状态的速度仍然很慢,可以更好地防⽌体内脂质体的爆裂释放和药物泄漏,以降低全⾝性毒性的⻛险。黑龙江脂质体载药核酸脂质体制备方法:原位制备脂质体。

南京脂质体载药技术服务公司,脂质体载药

商业脂质体产品,包括Visudyne和AmBisome,使⽤这种⽅法制造。MLV悬浮液在⾼压下通过⼀个狭窄的间隙,通过剪切⼒、湍流和速度梯度产⽣的流体空化⽽被分解,然后重新排列成更⼩的脂质体。颗粒⼤⼩和粒度分布由均质过程的参数决定,如压⼒、处理周期、阀⻔和冲击设计、流速等;它们还受到样品性质的影响,包括散装介质的组成和粘度以及颗粒的初始尺⼨分布。不断增加的压⼒和处理循环会降低颗粒尺⼨和多分散性指数(PDI),但也会导致封装效率降低。

脂质体质量控制的重要性与常规药物剂型(如⼩分⼦注射溶液)不同,脂质体中装载的***性分⼦在全⾝给药后(如静脉注射)转运到肿瘤细胞的过程更为复杂主要经历以下⼏个步骤:(1)从⾎管内间隙外渗到组织间质:脂质体通过扩散和/或对流穿越**⾎管壁不连续的内⽪连接点(100nm-2µm)进⼊**间质。同时⼀部分脂质体被MPS从体循环中***,特别是对于⼤尺⼨(>200nm、疏⽔和带电颗粒表⾯(带负电荷或正电荷)的颗粒。(2)通过扩散和对流进⾏间质运输,以接近单个肿瘤细胞。利⽤主动靶向对脂质体进⾏表⾯修饰将克服颗粒在细胞外基质(ECM)中扩散的物理阻⼒,因为颗粒上的靶向配体与肿瘤细胞表⾯的受体之间产⽣了更⾼的亲和⼒(3)通过⾮特异性或特异性结合的⽅式附着于细胞膜(4)通过内吞作⽤、膜融合或扩散进⼊细胞。内吞作⽤的途径取决于颗粒⼤⼩即⼤⼩为200nm,500nm的颗粒为⽹格蛋⽩介导的内吞作⽤和⼩泡介导的内吞作⽤,⼤胞吞作⽤可达5µm。(5)细胞内转运和药物释放。基于脂质体的这种运输过程由于循环脂质体颗粒⽆法穿过⼼脏⾎管的连续内⽪连接,与传统的阿霉素给药相⽐,Doxil明显降低了⼼脏毒性。与常规药物相⽐DaunoXome可使多柔⽐星的**递送量增加约10倍,并在体内提供持续释放。聚乙二醇在免疫脂质体中起到了重要作用。

南京脂质体载药技术服务公司,脂质体载药

脂质体被动载药⽅法

被动载药⽅法是在脂质体制备过程中对药物进⾏包封的方法。药物可以通过药物分⼦与脂质之间的共价、离⼦、静电、⾮共价或位阻相互作⽤被包封在内⽔空间内或包埋在脂质体的双层中。这种⽅法的主要缺点是包封效率低,从⽽导致额外的游离药物去除步骤。通过对**和出版物的了解,已上市的采⽤被动载药⽅法的脂质体产品包括AmBisome、Visudyne、Arikayce、DepoCyte、DepoDur和Expel。被动载药⽅法可⽤于亲脂***物物质。例如椎体卟啉,⼜称苯并卟啉衍⽣物单酸环A(BPD)(Vi-sudyne),是⼀种⾼亲脂性分⼦,能有效促进药物参与到脂质双分⼦层中。匀浆后,BPD在脂质体中的包封效率⼏乎为100%。AmpB(AmBisome)由于其两亲性结构,在⽔和⼤多数有机溶剂中难溶。AmpB可以通过带正电的AmpB氨基与带负电的DSPG磷酸基之间的离⼦结合紧密嵌⼊脂质双分⼦层。在pH1.0-3.0的酸性环境中,离⼦相互作⽤很容易形成。此外,AmpB的多烯部分与磷脂的脂肪烃链之间的疏⽔相互作⽤进⼀步加强了这种联系。被动载药法也可以用于亲⽔***物物质。硫酸阿⽶卡星是⼀种⾃由⽔溶性抗***药物。 固体脂质纳米颗粒和纳米结构脂质载体的区别。南京脂质体载药技术服务公司

含有DOTAP、胆固醇和DSPC-PEG2000的阳离子脂质体可以递送microRNA 。南京脂质体载药技术服务公司

脂质体疫苗通常在已知疫苗中使用纯化抗原或减毒病原体作为免疫原。然而,长期的免疫反应可能不会由纯化抗原诱导,甚至有时根本不会诱导反应。另一方面,减毒疫苗可以在免疫的患者中产生应答。然而,递送包裹在脂质体内的抗原可诱导长期应答,这在某些抗原的直接免疫中没有观察到。研究表明,恶性细胞的细胞膜可以形成包封潜在抗原的脂质体。文献报道了包封在脂质体中的肽作为**疫苗的***应用能力。有研究评估了BLP25(一个含有合成人MUC1肽的25个氨基酸序列)作为**疫苗的能力。用二硬脂酰磷脂酰胆碱、胆固醇和二肉豆醇酰磷脂酰甘油(摩尔比3:1:25)中含有的单磷脂酰脂A(1%w/w)制备脂质体,然后与脂偶联和非偶联的MUC1肽结合。C57BL/6小鼠免疫分别采用肽相关脂质体、肽与无肽脂质体混合、脂肽单独免疫。结果表明,脂质体制剂对免疫应答有深远的影响。与物理相关的脂质体观察到强烈的免疫反应(抗原特异性t细胞细胞反应),而与肽混合的无肽脂质体或单独的脂肽则没有。体液免疫反应受到关联性质的***影响,这可以通过表面暴露的肽脂质体诱导muc1特异性抗体来证明。因此可以通过调整脂质体药物传递系统来诱导优先细胞反应这提出了一个假设即不同的脂质体配方刺激不同的免疫途径。南京脂质体载药技术服务公司

与脂质体载药相关的**
信息来源于互联网 本站不为信息真实性负责