双面镀膜光刻是针对硅及其它半导体基片发展起来的加工技术。在基片两面制作光刻图样并且实现映射对准曝光,如果图样不是轴向对称的,往往需要事先设计图样成镜像关系的两块掩模板,每块掩模板用于基片一个表面的曝光,加工设备的高精度掩模—基片对准技术是关键。对于玻璃基片,设计对准标记并充分利用其透明属性,可以方便对准操作,提高对准精度。光学玻璃基片,表面光洁度不如晶圆,需要事先经过光学抛光的工艺处理。玻璃基片的透光性是个可利用的属性,物镜可以直接透过基片看到掩模板的对准标记。数字显微镜可以不断变焦观察掩模板和基片的对准情形,不再以关联物镜参照系的数字存储图像为基准,则调焦引起的物镜抖动对于对准精度不再发生作用。这就是玻璃基片的透明属性带来的好处。光掩膜版的制作则是通过无掩膜光刻技术得到。广州半导体光刻

用O2等离子体对样品整体处理,以清理显影后可能的非望残留。特别是负胶但也包括正胶,在显影后会在原来胶-基板界面处残留聚合物薄层,这个问题在结构小于1um或大深-宽比的结构中更为严重。当然过程中留胶厚度也会降低,但是影响不会太大。在刻蚀或镀膜之前需要硬烤以去除残留的显影液和水,并退火以改善由于显影过程渗透和膨胀导致的界面接合状况。同时提高胶的硬度和提高抗刻蚀性。硬烤温度一般高达120度以上,时间也在20分左右。主要的限制是温度过高会使图形边缘变差以及刻蚀后难以去除。广东紫外光刻二氧化硅的湿法刻蚀通常使用HF。

SU-8光刻胶在近紫外光(365nm-400nm)范围内光吸收度很低,且整个光刻胶层所获得的曝光量均匀一致,可得到具有垂直侧壁和高深宽比的厚膜图形;它还具有良好的力学性能、抗化学腐蚀性和热稳定性;在受到紫外辐射后发生交联,是一种化学扩大负性胶,可以形成台阶等结构复杂的图形;在电镀时可以直接作为绝缘体使用。SU-具有分子量低、溶解度好、透明度高、可形成光滑膜层、玻璃化温度(Tg)低、粘度可降低、单次旋涂可得超厚膜层(650μm)、涂层厚度均匀、高宽比大(10:1)、耐化学性优异、生物相容性好(微流控芯片)的特点。SU-8光刻胶具有许多优异的性能,可以制造数百Lm甚至1000Lm厚、深宽比可达50的MEMS微结构,在一定程度上代替了LIGA技术,而成本降低,成为近年来研究的一个热点。但众所周知,SU-8对工艺参数的改变非常敏感,且固化厚的光刻胶难以彻底的消除。这些工艺参数包括衬底类型、基片预处理、前烘温度和时间、曝光时间、中烘温度和时间、显影方式和时间等。
在匀胶工艺中,转速的快慢和控制精度直接关系到旋涂层的厚度控制和膜层均匀性。匀胶机的转速精度是一项重要的指标。用来吸片的真空泵一般选择无油泵,上配有压力表,同时现在很多匀胶机有互锁,未检测的真空将不会启动。有时会出现胶液进入真空管道的现象,有的匀胶机厂商会在某一段管路加一段"U型"管路,降低异物进入真空管道的影响。光刻胶主要应用于半导体、显示面板与印制电路板等三大领域。其中,半导体光刻胶技术难度高,主要被美日企业垄断。据相关研究机构数据显示,全球光刻胶市场中,LCD光刻胶、PCB光刻胶、半导体光刻胶产品占比较为平均。相比之下,中国光刻胶生产能力主要集中PCB光刻胶,占比高达约94%;半导体光刻胶由于技术壁垒较高占约2%。此外,光刻胶是生产28nm、14nm乃至10nm以下制程的关键,被国外巨头垄断,国产化任重道远。剥离工艺(lift-off)是指在有光刻胶图形的掩膜上镀膜后,再去除光刻胶获得图案化的金属的工艺。

光源的选择不但影响光刻胶的曝光效果和稳定性,还直接决定了光刻图形的精度和生产效率。选择合适的光源可以提高光刻图形的分辨率和清晰度,使得在更小的芯片上集成更多的电路成为可能。同时,优化光源的功率和曝光时间可以缩短光刻周期,提高生产效率。然而,光源的选择也需要考虑成本和环境影响。高亮度、高稳定性的光源往往伴随着更高的制造成本和维护成本。因此,在选择光源时,需要在保证图形精度和生产效率的同时,兼顾成本和环境可持续性!3D光刻技术为半导体封装开辟了新路径。浙江激光直写光刻
光刻机经历了5代产品发展,每次改进和创新都提升了光刻机所能实现的工艺节点。广州半导体光刻
光刻胶旋涂是特别是厚胶的旋涂和方形衬底匀胶时,会在衬底的边缘形成胶厚的光刻胶边即是所谓的边胶,即光刻胶的边缘突起,在使用接触式光刻的情况下会导致光刻胶曝光的图案分辨率低、尺寸误差大或显影后图案的侧壁不陡直等。如果无法通过自动化设备完成去边角工艺(EBR)的话,以通过以下措施帮助减少/消除边胶:尽可能使用圆形基底;使用高加速度,高转速;在前烘前等待一段时间;调整良好旋涂腔室保证衬底与衬底托盘之间紧密接触;非圆形衬底:如有可能的话,可将衬底边缘有边珠的位置一起裁切掉,或用洁净间的刷子将边胶刷洗掉。广州半导体光刻