我国西南地区地震频发,大量边坡受强震累积作用产生损伤,极易受天气和人类工程活动影响诱发滑坡灾害,开展强震区岩质边坡长期稳定性研究尤为重要。黄土表(浅)层裂隙及其发育,使得滑坡、崩塌等地质灾害频繁发生,对含裂隙的土质斜坡的研究是一种有益的探索。研究团队通过开展含裂隙黄土斜坡和不含裂隙黄土斜坡的对比振动台模型试验,研究地震荷载作用下黄土斜坡坡面位移和加速度响应规律。通过三维全场应变测量系统,高精度、实时获得斜坡表面的变形量,从斜坡坡面位移和坡体加速度两个方面分析斜坡的动力响应特征,揭示地震作用下两类黄土地震斜坡的动力响应特性。在材料科学领域,光学非接触测量可以用于研究材料的力学性能和变形行为。江西高速光学数字图像相关应变与运动测量系统

机械式应变测量方法:机械式应变测量已经有很长的历史,主要利用百分表或千分表测量变形前后测试标距内的距离变化而得到构件测试标距内的平均应变。工程测量中使用的机械式应变测量仪器主要包括手持应变仪和千分表引伸计。机械式应变测量方法主要的特点是读数直观、环境适应能力强、可重复性使用等。但需要人工读数、费时费力、精度差,对于应变测点数量众多的桥梁静载试验显然不合适。因此,除了少数室内模型试验的特殊需要,工程结构中很少使用。VIC-3D数字图像相关总代理在汽车制造中,刚学非接触应变测量技术可用于检测轮胎、发动机、车身和底盘等关键部位的应变变化。

典型应用案例分析航空航天领域飞机蒙皮疲劳测试复合材料冲击损伤热防护系统变形连接件力学行为汽车工业应用碰撞测试变形分析焊接残余应力测量橡胶部件大变形电池组热膨胀生物医学工程骨科植入物测试血管支架扩张软组织力学特性牙科材料研究;技术发展趋势多尺度测量融合宏观-微观关联分析跨尺度数据配准异源数据融合智能化发展自动特征识别实时数据处理异常检测算法自适应测量新方法创新超分辨率重建深度学习增强压缩感知应用光子多普勒技术。
光学测量领域中,光学应变测量和光学干涉测量是两种重要的技术手段。虽然它们都属于光学测量,但在测量原理和应用背景上存在明显差异。首先,让我们深入探讨光学应变测量的工作原理。这种测量技术的中心是通过捕捉物体表面的形变来推断其内部的应力分布状态。该过程主要依赖于光栅投影和图像处理技术。具体实施步骤包括将光栅投射到目标物体表面,随后使用高精度相机或其他光学传感器捕捉光栅形变图像。通过对这些图像进行一系列复杂而精密的处理和分析,我们能够得到物体表面的应变分布信息。 在生物医学领域,光学非接触应变测量技术可用于测量人体皮肤的应变变化,用于医学研究、病理诊断等领域。

拉力试验力值的应变测量是通过测力传感器、扩展器和数据处理系统来完成的。从数据力学上看,在小变形的前提下,弹性元件的某一点应变霹雳与弹性元件的力成正比,也与弹性变形成正比。以S型试验机传感器为例,当传感器受到拉力P的影响时,由于弹性元件的应变与外力P的大小成正比,弹性元件的应变与外力P的大小成正比,应变片可以连接到测量电路,测量其输出电压,然后测量输出力的大小。变形测量是通过变形测量和安装来测量的,用于测量样品在实验过程中的变形。安装有两个夹头,通过一系列的传记念头结构与安装在测量和安装顶部的光电编码器连接。利用光学原理进行非接触应变测量,有效评估钢材中孔洞的大小和分布,保障质量。VIC-3D数字图像相关总代理
三维应变测量技术采用可移动式非接触测量头,可以方便地整合应用到静态、动态、高速和高温等测量环境中。江西高速光学数字图像相关应变与运动测量系统
机械式应变测量方法:机械式应变测量已经有很长的历史,其主要利用百分表或千分表测量变形前后测试标距内的距离变化而得到构件测试标距内的平均应变。工程测量中使用的机械式应变测量仪器主要包括手持应变仪和千分表引伸计。机械式应变测量方法主要优点是读数直观、环境适应能力强、可重复性使用等。但需要人工读数、费时费力、精度差,对于应变测点数量众多的桥梁静载试验显然不合适。因此,除了少数室内模型试验的特殊需要,工程结构中很少使用。江西高速光学数字图像相关应变与运动测量系统