随着科技的不断进步,光学非接触应变测量技术正朝着更高精度、更复杂环境适应、更智能分析的方向演进。研索仪器将持续依托全球前沿的产品资源与本土化服务优势,在技术创新与行业应用两个维度不断突破,为中国科研创新与产业升级注入更强动力。在技术创新层面,研索仪器将重点布局三大方向:一是更高精度的测量技术研发,通过优化光学系统设计与算法改进,进一步提升测量精度至纳米级,满足微纳电子、生物医学等领域的精密测量需求;二是极端环境测量能力的强化,开发适应更深低温、更高温度、更强辐射等极端条件的测量系统,服务于航空航天、核能等装备研发;三是智能分析技术的融合应用,结合深度学习等先进算法,实现裂尖定位、缺陷识别等任务的自动化与智能化,提升数据分析效率与精度。同时,公司将持续深化与达索系统等国际前沿企业的合作,推动测量技术与仿真平台的深度融合,构建更完善的 "实验 - 仿真" 闭环体系。研索仪器VIC-3D非接触全场变形测量系统可用于科研实验复合材料分层失效研究,微电子封装焊点疲劳评估。上海三维全场非接触应变测量

生物医学:人工关节与组织工程的“光学显微镜”人工髋关节在体运动中,聚乙烯衬垫与金属股骨头间的接触应力导致衬垫磨损,可能引发假体松动。微型DIC系统结合透明关节模拟器,实时观测衬垫表面应变分布与裂纹扩展路径,发现高应变区域与磨损斑高度重合,为材料改性(如添加纳米氧化铝颗粒增强耐磨性)提供了直接证据。在组织工程领域,DIC技术用于监测细胞支架在动态拉伸下的变形行为,揭示机械刺激对干细胞分化的调控机制,推动“机械生物学”从理论走向临床应用。云南VIC-Gauge 2D视频引伸计应变系统研索仪器光学非接触全场应变测量系统可覆盖从静态到动态(万帧/秒)的变形过程。

航空航天:复合材料结构的“光学体检”,商用飞机机翼壁板采用碳纤维复合材料以减轻重量,但其各向异性特性导致应变分布复杂,传统应变片易引发层间损伤。三维DIC系统在机翼静力试验中,实时采集壁板在气动载荷下的全场应变,结合数字体积相关(DVC)技术分析内部纤维断裂与基体裂纹扩展,使复合材料结构设计周期缩短40%。在火箭燃料贮箱水压试验中,光纤传感网络沿贮箱周向布置,连续监测毫米级蠕变位移,数据通过无线传输至控制中心,实现全生命周期健康管理。
作为当前主流的技术路径,数字图像相关(DIC)技术的工作流程已形成标准化范式:首先在被测物体表面制备随机散斑图案,这一图案如同 "光学指纹",为后续识别提供特征标记,可通过人工喷涂、光刻或利用材料自然纹理实现;随后采用高分辨率相机阵列同步采集变形前后的图像序列,捕捉每一个微小形变瞬间;通过零均值归一化互相关系数(ZNCC)等算法,追踪散斑在图像中的位移变化,经三维重建计算得到全场位移场与应变场数据。这种技术路径带来三大突破:其一,非接触特性消除了测量器件对测试系统的力学干扰,尤其适用于软材料、微纳结构等易损伤样品的测试;其二,全场测量能力实现了从 "点测量" 到 "面分析" 的跨越,单次测试可获取数百万个数据点,使变形分布可视化成为可能;其三,亚像素级测量精度突破了传统方法的极限,位移测量精度可达 0.01 像素,配合高分辨率相机可实现纳米级形变检测。这些优势让光学非接触测量成为解决复杂力学测试问题的方案。研索仪器可实时、无损地获取材料/结构表面的三维形变与应变场分布。

近年来,DIC技术向三维化与微型化演进。三维DIC通过双目视觉或多相机系统重建表面三维形貌,消除平面DIC因出平面位移导致的测量误差,在复合材料层间剪切测试中展现出独特优势。微型DIC则结合显微成像技术,实现微米级分辨率的应变测量,为MEMS器件、生物细胞力学研究提供利器。干涉测量以光波波长为基准,通过检测干涉条纹变化实现纳米级位移测量。根据干涉光路设计,可分为电子散斑干涉术(ESPI)、云纹干涉术与光纤干涉术等分支。研索科技光学非接触应变测量,高效助力结构力学性能研究。VIC-2D数字图像相关技术测量装置
研索仪器非接触全场系统可自动生成全场应变云图、主应变方向、泊松比等参数,支持与FEA仿真数据对比验证。上海三维全场非接触应变测量
技术特点非接触性:避免接触式测量(如应变片)对被测物体的力学干扰,尤其适用于柔软材料、高温 / 低温环境、高速运动物体;高精度:应变测量精度可达 10⁻⁶~10⁻⁹量级,位移精度可达纳米级(激光干涉法)或微米级(DIC);全场测量:可同时获取被测物体表面任意点的应变 / 位移数据,而非单点测量,便于分析整体变形规律;适应性强:可用于高温、低温、高压、强腐蚀、高速运动等恶劣工况,兼容金属、复合材料、塑料、橡胶等多种材料。上海三维全场非接触应变测量