在多光子显微镜(也称为非线性或双光子显微镜)中,以两倍正常激发波长照射样品。更长的波长是有利的,因为它们可以更深地穿透样品进行3D成像,并且因为它们不会损坏样品,从而延长样品寿命。为了实现多光子激发,照明光束在空间上聚焦(使用光学器件),同时使用高能短脉冲激发光束以提高两个(或更多)光子同时到达同一位置(即荧光团分子)的概率。多光子显微技术的例子包括二次谐波产生(SHG)、三次谐波产生(THG)、相干反斯托克斯拉曼光谱(CARS)和受激发射耗尽(STED)显微技术。由于这些技术中的每一种都使用脉冲激光器,因此选择能够比较大限度地减少脉冲色散的光学组件很重要,并且激光反射二向色镜应具有低GDD特性。多光子显微镜在基础科学和临床诊断领域的应用范围正在持续增长。灵长类多光子显微镜层析成像
快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。灵长类多光子显微镜层析成像多光子激光扫描显微镜更能解决生物组织中深层物质的层析成像问题, 扩大了应用范围。
随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊疗提供了更多、更有效的手段。生物医学光学是近年来受到国际光学界和生物医学界关注的研究热点,在生物活检、光动力、细胞结构与功能检测、基因表达规律的在体研究等问题上取得了一系列研究成果,目前正在从宏观到微观上对大脑活动与功能进行多层面的研究。细胞重大生命活动(包括细胞增殖、分化、凋亡及信号转导)的发生和调节是通过生物大分子间(如蛋白质-蛋白质、蛋白质-核酸等)相互作用来实现的。蛋白质作为基因调控的产物,与细胞和机体生理过程代谢直接相关,深入研究基因表达及蛋白质-蛋白质相互作用不仅能揭示生命活动的基本规律,同时也能深入了解疾病发生的分子机理,进而为寻找更有效的药物分子、提高药物筛选和药物设计的效率提供新的方法和思路。
SternandJeanMarx在评论中说:祖家能够在更为精细的层次研究树突的功能,这在以前是完全不可能的。新的技术(如脑片的膜片钳和双光子显微使人们对树突的计算和神经信号处理中的作用有了更好的理解。他们解释了是树突模式和形状多样性,及其独特的电、及其独特的电化学特征使神经元完成了一系列的专门任务。双光子与共聚焦在发育生物学中的应用双光子∶每2.5分钟扫描一次,观察24小时,发育到桑椹胚和胚泡阶段共聚焦∶每15分钟扫描一次,观察8小时后细胞分裂停止,不能发育到桑椹胚和胚泡阶段共聚焦激发时的细胞存活率为多光子系统的10~20%。目前主要使用的多光子显微镜包括双光子显微镜和三光子显微镜。
神经科学重要的研究工具-多光子显微镜作为神经科学重要的研究工具,近年来发展快速,品牌也众多。我们通常都是在一间开着冷气的房间里的超大防震台上见过这样一套设备。台面上复杂的光路也让我们在使用中小心翼翼,生怕弄坏了哪里而无从修复。你是否想象过一台放在书桌边上就能使用的多光子显微镜,一台跟普通显微镜一样操作简便的多光子显微镜,一台不用担心会碰坏的多光子显微镜,一台可以在不同实验室之间搬来搬去的多光子显微镜,一台可以从任意角度进行观察扫描的多光子显微镜?滔博生物TOP-Bright是一家集研发,生产,销售于一体的专注于神经科学产品及致力于向高校、科研机构等领域提供实验室一体化方案的高科技企业。业务服务范围已遍布至全国各地几百家实验室。目前公司主营产品是享誉全球的国际品牌和产品,这些仪器设备都是科学研究所必备且不可替代的基础仪器多光子激光扫描显微镜是建立在激光扫描显微镜技术基础上的实验方法,三维观察上提供更的光学切片能力。激光扫描多光子显微镜数据采集
滔博生物多光子显微镜具有出色的成像深度和分辨率!灵长类多光子显微镜层析成像
多光子激发在紫外成像的优势在可见光脉冲中能得到紫外衍射的显微观察像。即使不使用紫外域光源、光学元件用可见光源、光学元件就能得到紫外光激励的高空间分辨率图像。多光子在生物成像中的优势在生物显微镜观察方面,较早考虑的是不损坏生物本身的活性状态,维持水分、离子浓度、氧和养分的流通。在光观察场合,无论是热还是光子能量方面都必须停留在细胞不受损伤的照射量、光能量内。多光子显微镜则能够满足此,而且还具有很多优点。如三维分辨率、深度侵入、在散射效率、背景光、信噪比、控制等方面,均有以往激光显微镜不具备,或具有无法比拟的超越特性。灵长类多光子显微镜层析成像