根据以上分析可知 ,白光干涉时域解调方案的优点是:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动,光源的波长漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,所以扫描装置的分辨率将影响系统的精度。采用这种解调方案的测量分辨率一般是几个微米,达到亚微米的分辨率,主要受机械扫描部件的分辨率和稳定性限制。文献[46]所报道的位移扫描的分辨率可以达到0.54μm。当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到限制。白光干涉膜厚测量技术的优化需要对实验方法和算法进行改进;苏州膜厚仪供应
薄膜作为改善器件性能的重要途径,被广泛应用于现代光学 、电子 、医疗、能源、建材等技术领域。受薄膜制备工艺及生产环境影响,成品薄膜存在厚度分布不均、表面粗糙度大等问题,导致其光学及物理性能达不到设计要求,严重影响成品的性能及应用。随着薄膜生产技术的迅速发展,准确测量和科学评价薄膜特性作为研究热点,也引起产业界的高度重视。厚度作为关键指标直接影响薄膜工作特性,合理监控薄膜厚度对于及时调整生产工艺参数、降低加工成本、提高生产效率及企业竞争力等具有重要作用和深远意义。然而,对于市场份额占比大的微米级工业薄膜,除要求测量系统不仅具有百纳米级的测量精度之外,还要求具备体积小、稳定性好的特点,以适应工业现场环境的在线检测需求。目前光学薄膜测厚方法仍无法兼顾高精度、轻小体积,以及合理的系统成本,而具备纳米级测量分辨力的商用薄膜测厚仪器往往价格昂贵、体积较大,且无法响应工业生产现场的在线测量需求。基于以上分析,本课题提出基于反射光谱原理的高精度工业薄膜厚度测量解决方案,研制小型化、低成本的薄膜厚度测量系统,并提出无需标定样品的高效稳定的膜厚计算算法。研发的系统可以实现微米级工业薄膜的厚度测量。苏州膜厚仪招商加盟白光干涉膜厚仪的应用非常广,特别是在半导体、光学、电子和化学等领域。
薄膜作为重要元件 ,通常使用金属、合金、化合物、聚合物等作为其主要基材,品类涵盖光学膜、电隔膜、阻隔膜、保护膜、装饰膜等多种功能性薄膜,广泛应用于现代光学、电子、医疗、能源、建材等技术领域。常用薄膜的厚度范围从纳米级到微米级不等。纳米和亚微米级薄膜主要是基于干涉效应调制的光学薄膜,包括各种增透增反膜、偏振膜、干涉滤光片和分光膜等。部分薄膜经特殊工艺处理后还具有耐高温、耐腐蚀、耐磨损等特性,对通讯、显示、存储等领域内光学仪器的质量起决定性作用[1-3],如平面显示器使用的ITO镀膜,太阳能电池表面的SiO2减反射膜等。微米级以上的薄膜以工农业薄膜为主,多使用聚酯材料,具有易改性、可回收、适用范围广等特点。例如6微米厚度以下的电容器膜,20微米厚度以下的大部分包装印刷用薄膜,25~38微米厚的建筑玻璃贴膜及汽车贴膜,以及厚度为25~65微米的防伪标牌及拉线胶带等。微米级薄膜利用其良好的延展、密封、绝缘特性,遍及食品包装、表面保护、磁带基材、感光储能等应用市场,加工速度快,市场占比高。
目前 ,应用的显微干涉方式主要有Mirau显微干涉和Michelson显微干涉两张方式。在Mirau型显微干涉结构,在该结构中物镜和被测样品之间有两块平板,一个是涂覆有高反射膜的平板作为参考镜,另一块涂覆半透半反射膜的平板作为分光棱镜,由于参考镜位于物镜和被测样品之间,从而使物镜外壳更加紧凑,工作距离相对而言短一些,其倍率一般为10-50倍,Mirau显微干涉物镜参考端使用与测量端相同显微物镜,因此没有额外的光程差。是常用的方法之一。广泛应用于电子、半导体、光学、化学等领域,为研究和开发提供了有力的手段。
光具有传播的特性 ,不同波列在相遇的区域,振动将相互叠加,是各列光波独自在该点所引起的振动矢量和。两束光要发生干涉,应必须满足三个相干条件,即:频率一致、振动方向一致、相位差稳定一致。发生干涉的两束光在一些地方振动加强,而在另一些地方振动减弱,产生规则的明暗交替变化。任何干涉测量都是完全建立在这种光波典型特性上的。下图分别表示干涉相长和干涉相消的合振幅。与激光光源相比,白光光源的相干长度在几微米到几十微米内,通常都很短,更为重要的是,白光光源产生的干涉条纹具有一个典型的特征:即条纹有一个固定不变的位置,该固定位置对应于光程差为零的平衡位置,并在该位置白光输出光强度具有最大值,并通过探测该光强最大值,可实现样品表面位移的精密测量。此外,白光光源具有系统抗干扰能力强、稳定性好且动态范围大、结构简单,成本低廉等优点。因此,白光垂直扫描干涉、白光反射光谱等基于白光干涉的光学测量技术在薄膜三维形貌测量、薄膜厚度精密测量等领域得以广泛应用。白光干涉膜厚测量技术可以实现对薄膜的在线检测和控制;纳米级膜厚仪生产商
白光干涉膜厚测量技术可以在不同环境下进行测量。苏州膜厚仪供应
在纳米量级薄膜的各项相关参数中 ,薄膜材料的厚度是薄膜设计和制备过程中的重要参数,是决定薄膜性质和性能的基本参量之一,它对于薄膜的光学、力学和电磁性能等都有重要的影响[3]。但是由于纳米量级薄膜的极小尺寸及其突出的表面效应,使得对其厚度的准确测量变得困难。经过众多科研技术人员的探索和研究,新的薄膜厚度测量理论和测量技术不断涌现,测量方法实现了从手动到自动,有损到无损测量。由于待测薄膜材料的性质不同,其适用的厚度测量方案也不尽相同。对于厚度在纳米量级的薄膜,利用光学原理的测量技术应用。相比于其他方法,光学测量方法因为具有精度高,速度快,无损测量等优势而成为主要的检测手段。其中具有代表性的测量方法有椭圆偏振法,干涉法,光谱法,棱镜耦合法等。苏州膜厚仪供应