自上世纪60年代起 ,利用X及β射线、近红外光源开发的在线薄膜测厚系统广泛应用于西方先进国家的工业生产线中。20世纪70年代后,为满足日益增长的质检需求,电涡流、电磁电容、超声波、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术取得巨大突破,以椭圆偏振法和光度法为展示的光学检测技术以高精度、低成本、轻便环保、高速稳固为研发方向不断迭代更新,迅速占领日用电器及工业生产市场,并发展出依据用户需求个性化定制产品的能力。其中,对于市场份额占比较大的微米级薄膜,除要求测量系统不仅具有百纳米级的测量准确度及分辨力以外,还要求测量系统在存在不规则环境干扰的工业现场下,具备较高的稳定性和抗干扰能力。可以配合不同的软件进行分析和数据处理,例如建立数据库、统计数据等。纳米级膜厚仪制作厂家
干涉法与分光光度法都是利用相干光形成等厚干涉条纹的原理来确定薄膜厚度和折射率 ,然而与薄膜自发产生的等倾干涉不同,干涉法是通过设置参考光路,形成与测量光路间的干涉条纹,因此其相位信息包含两个部分,分别是由参考平面和测量平面间扫描高度引起的附加相位和由透明薄膜内部多次反射引起的膜厚相位。干涉法测量光路使用面阵CCD接收参考平面和测量平面间相干波面的干涉光强分布,不同于以上三种点测量方式,可一次性生成薄膜待测区域的表面形貌信息,但同时由于存在大量轴向扫描和数据解算,完成单次测量的时间相对较长。纳米级膜厚仪应用广泛应用于电子、半导体、光学、化学等领域,为研究和开发提供了有力的手段。
白光光谱法克服了干涉级次的模糊识别问题 ,具有动态测量范围大,连续测量时波动范围小的特点,但在实际测量中,由于测量误差、仪器误差、拟合误差等因素,干涉级次的测量精度仍其受影响,会出现干扰级次的误判和干扰级次的跳变现象。导致公式计算得到的干扰级次m值与实际谱峰干涉级次m'(整数)之间有误差。为得到准确的干涉级次,本文依据干涉级次的连续特性设计了以下校正流程图,获得了靶丸壳层光学厚度的精确值。导入白光干涉光谱测量曲线。
白光干涉在零光程差处 ,出现零级干涉条纹,随着光程差的增加,光源谱宽范围内的每条谱线各自形成的干涉条纹之间互有偏移,叠加的整体效果使条纹对比度下降。测量精度高,可以实现测量,采用白光干涉原理的测量系统的抗干扰能力强,动态范围大,具有快速检测和结构紧凑等优点。普通的激光干涉与白光干涉之间虽然有差别,但也有很多的共同之处。可以说,白光干涉实际上就是将白光看作一系列理想的单色光在时域上的相干叠加,在频域上观察到的就是不同波长对应的干涉光强变化曲线。白光干涉膜厚仪需要校准,标准样品的选择和使用至关重要。
在白光反射光谱探测模块中,入射光经过分光镜1分光后 ,一部分光通过物镜聚焦到靶丸表面 ,靶丸壳层上、下表面的反射光经过物镜、分光镜1、聚焦透镜、分光镜2后,一部分光聚焦到光纤端面并到达光谱仪探测器,可实现靶丸壳层白光干涉光谱的测量,一部分光到达CCD探测器,可获得靶丸表面的光学图像。靶丸吸附转位模块和三维运动模块分别用于靶丸的吸附定位以及靶丸特定角度转位以及靶丸位置的辅助调整,测量过程中,将靶丸放置于轴系吸嘴前端,通过微型真空泵负压吸附于吸嘴上;然后,移动位移平台,将靶丸移动至CCD视场中心,通过Z向位移台,使靶丸表面成像清晰;利用光谱仪探测靶丸壳层的白光反射光谱;靶丸在轴系的带动下,平稳转位到特定角度,由于轴系的回转误差,转位后靶丸可能偏移CCD视场中心,此时可通过调整轴系前端的调心结构,使靶丸定点位于视场中心并采集其白光反射光谱;重复以上步骤,可实现靶丸特定位置或圆周轮廓白光反射光谱数据的测量。为减少外界干扰和震动而引起的测量误差,该装置放置于气浮平台上,通过高性能的隔振效果可保证测量结果的稳定性。工作原理是基于膜层与底材反射率及相位差,通过测量反射光的干涉来计算膜层厚度。苏州膜厚仪价格
光路长度越长,分辨率越高,但同时也更容易受到静态振动等干扰因素的影响。纳米级膜厚仪制作厂家
白光扫描干涉法能免除色光相移干涉术测量的局限性 。白光扫描干涉法采用白光作为光源,白光作为一种宽光谱的光源,相干长度较短,因此发生干涉的位置只能在很小的空间范围内。而且在白光干涉时,有一个确切的零点位置。测量光和参考光的光程相等时,所有波段的光都会发生相长干涉,这时就能观测到有一个很明亮的零级条纹,同时干涉信号也出现最大值,通过分析这个干涉信号,就能得到表面上对应数据点的相对高度,从而得到被测物体的几何形貌。白光扫描干涉术是通过测量干涉条纹来完成的,而干涉条纹的清晰度直接影响测试精度。因此,为了提高精度,就需要更为复杂的光学系统,这使得条纹的测量变成一项费力又费时的工作。纳米级膜厚仪制作厂家