膜厚仪基本参数
  • 品牌
  • 创视智能-TronSight
  • 型号
  • TS-IT50
  • 用途类型
  • 薄膜测厚
  • 工作原理
  • 白光干涉型
  • 输出信号
  • 模拟型
  • 材质
  • 金属膜
  • 位移特征
  • 点位移
  • 测量范围
  • 小位移
膜厚仪企业商机

薄膜作为一种特殊的微结构 ,近年来在电子学 、摩擦学、现代光学得到了广泛的应用,薄膜的测试技术变得越来越重要。尤其是在厚度这一特定方向上,尺寸很小,基本上都是微观可测量。因此,在微纳测量领域中,薄膜厚度的测试是一个非常重要而且很实用的研究方向。在工业生产中,薄膜的厚度直接关系到薄膜能否正常工作。在半导体工业中,膜厚的测量是硅单晶体表面热氧化厚度以及平整度质量控制的重要手段。薄膜的厚度影响薄膜的电磁性能、力学性能和光学性能等,所以准确地测量薄膜的厚度成为一种关键技术。总的来说,白光干涉膜厚仪是一种应用广、具有高精度和可靠性的薄膜厚度测量仪器。薄膜干涉膜厚仪生产商

白光干涉光谱分析是目前白光干涉测量的一个重要方向 ,此项技术主要是利用光谱仪将对条纹的测量转变成为对不同波长光谱的测量 。通过分析被测物体的光谱特性,就能够得到相应的长度信息和形貌信息。相比于白光扫描干涉术,它不需要大量的扫描过程,因此提高了测量效率,而且也减小了环境对它的影响。此项技术能够测量距离、位移、块状材料的群折射率以及多层薄膜厚度。白干干涉光谱法是基于频域干涉的理论,采用白光作为宽波段光源,经过分光棱镜,被分成两束光,这两束光分别入射到参考面和被测物体,反射回来后经过分光棱镜合成后,由色散元件分光至探测器,记录频域上的干涉信号。此光谱信号包含了被测表面的信息,如果此时被测物体是薄膜,则薄膜的厚度也包含在这光谱信号当中。这样就把白光干涉的精度和光谱测量的速度结合起来,形成了一种精度高而且速度快的测量方法。膜厚仪按需定制Michelson干涉仪的光路长度是影响仪器精度的重要因素。

干涉法作为面扫描方式可以一次性对薄膜局域内的厚度进行解算 ,适用于对面型整体形貌特征要求较高的测量对象。干涉法算法在于相位信息的提取,借助多种复合算法通常可以达到纳米级的测量准确度。然而主动干涉法对条纹稳定性不佳,光学元件表面的不清洁、光照度不均匀、光源不稳定、外界气流震动干扰等因素均可能影响干涉图的完整性[39],使干涉图样中包含噪声和部分区域的阴影,给后期处理带来困难。除此之外,干涉法系统精度的来源——精密移动及定位部件也增加了系统的成本,高精度的干涉仪往往较为昂贵。

根据以上分析可知 ,白光干涉时域解调方案的优点是:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动,光源的波长漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,所以扫描装置的分辨率将影响系统的精度。采用这种解调方案的测量分辨率一般是几个微米,达到亚微米的分辨率,主要受机械扫描部件的分辨率和稳定性限制。文献[46]所报道的位移扫描的分辨率可以达到0.54μm。当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到限制。可测量大气压下薄膜厚度在1纳米到1毫米之间。

光学测厚方法集光学 、机械、电子、计算机图像处理技术为一体,以其光波长为测量基准,从原理上保证了纳米级的测量精度。同时,光学测厚作为非接触式的测量方法,被广泛应用于精密元件表面形貌及厚度的无损测量。其中,薄膜厚度光学测量方法按光吸收、透反射、偏振和干涉等光学原理可分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法,其适用范围各有侧重,褒贬不一。因此结合多种测量方法的多通道式复合测量法也有研究,如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。白光干涉膜厚测量技术可以实现对薄膜的非接触式测量;白光干涉膜厚仪常用解决方案

高精度的白光干涉膜厚仪通常采用Michelson干涉仪的结构。薄膜干涉膜厚仪生产商

针对靶丸自身独特的特点及极端实验条件需求 ,使得靶丸参数的测试工作变得异常复杂。如何精确地测定靶丸的光学参数,一直是激光聚变研究者非常关注的课题。由于光学测量方法具有无损、非接触、测量效率高、操作简便等优越性,靶丸参数测量通常采用光学测量方式。常用的光学参数测量手段很多,目前,常用于测量靶丸几何参数或光学参数的测量方法有白光干涉法、光学显微干涉法、激光差动共焦法等。靶丸壳层折射率是冲击波分时调控实验研究中的重要参数,因此,精密测量靶丸壳层折射率十分有意义。而常用的折射率测量方法[13],如椭圆偏振法、折射率匹配法、白光光谱法、布儒斯特角法等。薄膜干涉膜厚仪生产商

与膜厚仪相关的**
信息来源于互联网 本站不为信息真实性负责