从图2的镜头图可以看出,第二块透镜的半径很小,主要是为了保证系统在整个工作范围内得到相对均匀的光斑。表1给出了在工作范围内光斑的直径大小,maximum为0.4mm,在靠近透镜的一边,minimun为0.08mm,在55mm处。由于成像系统的入射光是整形部分光经过物体散射回去的,因此整形系统得到的光斑不能太小;同时为了保证精度要求,光斑也不能太大,上面的结果能够满足需求。得到好的出射光斑以后,如何接收物体表面的散射光并使其精确成像,是确保激光位移传感器精度的关键问题。在直入射式三角法测量中,物体沿激光入射方向移动,物面并不垂直于成像光轴。那么在透镜成像过程中(如图1),由几何成像公式可证明: tanα/tanβ=d1/d',即为理想成像的Scheimpflug条件[5]。要想达到理想的成像效果,光电探测器需依此条件放置。它可以用于测量物体的形状和轮廓,以提供准确的几何信息。金山区激光位移传感器详情
所述微调装置2包括一蜗轮蜗杆机构21、一电子测量仪22以及一微调平台23;所述微调平台23设于所述电动伸缩双直线导轨11上端的尾部,所述微调平台23的末端向上设有一延伸部231;所述蜗轮蜗杆机构21设于所述微调平台23的前端;所述电子测量仪22的一端抵接于所述延伸部231,另一端抵接于所述蜗轮蜗杆机构21。所述蜗轮蜗杆机构21包括一横向蜗杆211、一蜗轮(未图示)以及一位移调节把手212;所述横向蜗杆211的一端与所述激光红外线接收挡板5的背面固接,另一端与所述电子测量仪22抵接;所述位移调节把手212与所述蜗轮固接;当旋转所述位移调节把手212时通过所述蜗轮联动所述横向蜗杆211进行横向位移。珠海激光位移传感器工厂激光位移传感器在学术科研行业的应用案例。
加工-测量-再加工-再测量是非球面加工的必要过程。非球面透镜的高精度检测不仅包括非球面表面形状的检测,还包括非球面中心偏差的测量。要求非球面透镜的形状误差在几厘米到几十厘米的范围内小于1μm。受现有冷加工工艺、车床运动误差、磨削力变形及检测误差的限制,加工的非球面光学元件会产生一些质量缺陷,无法保证跨尺度的产品满足高精度要求。为了使非球面透镜表面形状误差、中心偏差等参数满足设计精度要求,往往需要利用被加工非球面工件的中心偏差检测信息进行多误差校正和补偿加工。
在采用方式2的情况下,可以在成像物镜前或成像物镜6后加入能够引入像散的光学元器件(如平板玻璃),配合调整成像物镜6与感光元件7之间的距离时,可以在微米量级进行调整。每次调整后,可以进行MTF解析,在判断解析结果满足上述条件时,停止调节。如果调整后发现解析结果不满足上述条件,则继续进行调整。此外,在图1所示的实施例中,反光元件8设置在接收物镜6和感光元件7之间,从而可以提高所述激光位移传感器的内部空间利用率,减小其外形尺寸。在所述激光位移传感器外形尺寸允许的情况下,反光元件8可省略。在测量光斑和成像物镜6之间的带通滤光片5被用来滤除或降低杂散光对测量系统的影响。为什么要使用激光位移传感器呢?
本发明提出的激光位移传感器的成像物镜和感光元件的调制传递函数(MTF)解析结果满足MTFS>MTFT或MTFT>MTFS,能够利用像散,让呈现在感光元件上的光斑在水平方向(即,弧矢方向,S方向)变窄,而在竖直方向(即,子午方向,T方向)变长(或者让光斑在水平方向(即,弧矢方向,S方向)变宽,而在竖直方向(即,子午方向,T方向)变窄),有助于更加容易地确定光斑在水平方向上的中心位置,从而提高测量的准确度;由于激光位移传感器中感光元件的多个感光单元的阵列排布形状为矩形或线形,将矩形长边或直线的延伸方向上的MTF降低,也不会影响测量精度;不仅如此,由于在MTF值被拉高的方向上光斑变窄,而在MTF值被降低的方向上光斑变宽,所以光斑与像元之间的接触面积增大,使得光斑更加容易地被感光元件所接收,能够更好地应对使用中因为振动或机械变形等随带来的不良影响;此外,由于本发明提出的激光位移传感器所采用的成像物镜无需兼顾水平方向和CN1 06855391B4竖直方向的MTF值,所以能够降低物镜的设计难度,节省制造和维护成本;它可以用于测量机械零件的位移,以确保其精确性和稳定性。崇明区激光位移传感器成本价
激光位移传感器可以实现微米级的位移测量。金山区激光位移传感器详情
根据物体表面的散射特性,可确定入射光与成像透镜光轴的夹角。激光入射到被测物体表面,散射光强度成椭球型分布[6]。当入射光垂直入射时,α值越小,成像透镜接收到的散射光强度越大,但角度过小对探测器分辨率要求及制作工艺上都有较高难度,综合考虑取α值为21.8°,由仪器的测量范围±10mm可得到物距为53.85mm。通常情况下,库克三元组有很好的成像效果[7],因此选择库克三元组作为成像透镜的初始结构进行优化。优化过程中以各个镜片表面的半径为变量,控制厚度在适当范围,同时将像面与光轴的夹角β设为可变,采用CODEV的横向像差与波像差相结合的方式进行优化,得到下面的结果。图3为优化后的成像光学系统金山区激光位移传感器详情