干涉测量法[9-10]是基于光的干涉原理实现对薄膜厚度测量的光学方法 ,是一种高精度的测量技术。采用光学干涉原理的测量系统一般具有结构简单,成本低廉,稳定性好,抗干扰能力强,使用范围广等优点。对于大多数的干涉测量任务,都是通过薄膜表面和基底表面之间产生的干涉条纹的形状和分布规律,来研究干涉装置中待测物理量引入的光程差或者是位相差的变化,从而达到测量目的。光学干涉测量方法的测量精度可达到甚至优于纳米量级,而利用外差干涉进行测量,其精度甚至可以达到10-3nm量级[11]。根据所使用光源的不同,干涉测量方法又可以分为激光干涉测量和白光干涉测量两大类。激光干涉测量的分辨率更高,但是不能实现对静态信号的测量,只能测量输出信号的变化量或者是连续信号的变化,即只能实现相对测量。而白光干涉是通过对干涉信号中心条纹的有效识别来实现对物理量的测量,是一种测量方式,在薄膜厚度的测量中得到了广泛的应用。增加光路长度可以提高仪器分辨率,但同时也会更容易受到振动等干扰,需要采取降噪措施。膜厚仪性价比高企业
光具有传播的特性 ,不同波列在相遇的区域,振动将相互叠加,是各列光波独自在该点所引起的振动矢量和。两束光要发生干涉,应必须满足三个相干条件,即:频率一致、振动方向一致、相位差稳定一致。发生干涉的两束光在一些地方振动加强,而在另一些地方振动减弱,产生规则的明暗交替变化。任何干涉测量都是完全建立在这种光波典型特性上的。下图分别表示干涉相长和干涉相消的合振幅。与激光光源相比,白光光源的相干长度在几微米到几十微米内,通常都很短,更为重要的是,白光光源产生的干涉条纹具有一个典型的特征:即条纹有一个固定不变的位置,该固定位置对应于光程差为零的平衡位置,并在该位置白光输出光强度具有最大值,并通过探测该光强最大值,可实现样品表面位移的精密测量。此外,白光光源具有系统抗干扰能力强、稳定性好且动态范围大、结构简单,成本低廉等优点。因此,白光垂直扫描干涉、白光反射光谱等基于白光干涉的光学测量技术在薄膜三维形貌测量、薄膜厚度精密测量等领域得以广泛应用。非接触式膜厚仪白光干涉膜厚测量技术可以应用于光学元件制造中的薄膜厚度控制。
微纳制造技术的发展推动着检测技术向微纳领域进军 ,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、航天航空、医学、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。
常用白光垂直扫描干涉系统的原理 :入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定的参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列的干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。随着技术的不断进步和应用领域的扩展,白光干涉膜厚仪的性能和功能将得到进一步提高;
光谱拟合法易于测量具有应用领域 ,由于使用了迭代算法,因此该方法的优缺点在很大程度上取决于所选择的算法。随着各种全局优化算法的引入,遗传算法和模拟退火算法等新算法被用于薄膜参数的测量。其缺点是不够实用,该方法需要一个较好的薄膜的光学模型(包括色散系数、吸收系数、多层膜系统),但是在实际测试过程中,薄膜的色散和吸收的公式通常不准确,尤其是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。在实际应用中只能使用简化模型,因此,通常全光谱拟合法不如极值法有效。另外该方法的计算速度慢也不能满足快速计算的要求。白光干涉膜厚仪是一种可用于测量薄膜厚度的仪器,适用于透明薄膜和平行表面薄膜的测量。测量膜厚仪设备
白光干涉膜厚测量技术可以实现对薄膜的大范围测量和分析。膜厚仪性价比高企业
为限度提高靶丸内爆压缩效率 ,期望靶丸所有几何参数、物性参数均为理想球对称状态。因此,需要对靶丸壳层厚度分布进行精密的检测。靶丸壳层厚度常用的测量手法有X射线显微辐照法、激光差动共焦法、白光干涉法等。下面分别介绍了各个方法的特点与不足,以及各种测量方法的应用领域。白光干涉法[30]是以白光作为光源,宽光谱的白光准直后经分光棱镜分成两束光,一束光入射到参考镜。一束光入射到待测样品。由计算机控制压电陶瓷(PZT)沿Z轴方向进行扫描,当两路之间的光程差为零时,在分光棱镜汇聚后再次被分成两束,一束光通过光纤传输,并由光谱仪收集,另一束则被传递到CCD相机,用于样品观测。利用光谱分析算法对干涉信号图进行分析得到薄膜的厚度。该方法能应用靶丸壳层壁厚的测量,但是该测量方法需要已知靶丸壳层材料的折射率,同时,该方法也难以实现靶丸壳层厚度分布的测量。膜厚仪性价比高企业