膜厚仪基本参数
  • 品牌
  • 创视智能-TronSight
  • 型号
  • TS-IT50
  • 用途类型
  • 薄膜测厚
  • 工作原理
  • 白光干涉型
  • 输出信号
  • 模拟型
  • 材质
  • 金属膜
  • 位移特征
  • 点位移
  • 测量范围
  • 小位移
膜厚仪企业商机

常用白光垂直扫描干涉系统的原理 :入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定的参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列的干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。当光路长度增加,仪器的分辨率越高,也越容易受到静态振动等干扰因素的影响,需采取一些减小噪声的措施。光干涉膜厚仪出厂价

光具有相互叠加的特性,发生干涉的两束光在一些地方振动加强,而在另一些地方振动减弱,并产生规则的明暗交替变化。干涉测量需要满足三个相干条件:频率一致、振动方向一致、相位差稳定一致。与激光光源相比,白光光源的相干长度较短,通常在几微米到几十微米内。白光干涉的条纹有一个固定的位置,对应于光程差为零的平衡位置,并在该位置白光输出光强度具有最大值。通过探测光强最大值,可以实现样品表面位移的精密测量。白光垂直扫描干涉、白光反射光谱等技术,具有抗干扰能力强、稳定性好、动态范围大、结构简单、成本低廉等优点,并广泛应用于薄膜三维形貌测量和薄膜厚度精密测量等领域。小型膜厚仪产品原理总的来说,白光干涉膜厚仪是一种应用很广的测量薄膜厚度的仪器。

干涉法测量可表述为:白光干涉光谱法主要利用光的干涉原理和光谱分光原理,利用光在不同波长处的干涉光强进行求解。光源出射的光经分光棱镜分成两束,其中一束入射到参考镜,另一束入射到测量样品表面,两束光均发生反射并入射到分光棱镜,此时这两束光会发生干涉。干涉光经光谱仪采集得到白光光谱干涉信号,经由计算机处理数据、显示结果变化,之后读出厚度值或变化量。如何建立一套基于白光干涉法的晶圆膜厚测量装置,对于晶圆膜厚测量具有重要意义,设备价格、空间大小、操作难易程度都是其影响因素。

基于白光干涉法的晶圆膜厚测量装置,其特征在于:该装置包括白光光源、显微镜、分束镜、干涉物镜、光纤传输单元、准直器、光谱仪、USB传输线、计算机;光谱仪主要包括六部分,分别是:光纤入口、准直镜、光栅、聚焦镜、区域检测器、带OFLV滤波器的探测器;

光源发出的白光经准直镜扩束准直后成平行光,经分束镜射入Michelson干涉物镜,准直透镜将白光缩束准直后垂直照射到待测晶圆上,反射光之间相互发生干涉,经准直镜后干涉光强进入光纤耦合单元,完成干涉部分;

光纤传输的干涉信号进入光谱仪,计算机定时从光谱仪中采集光谱信号,获取诸如光强、反射率等信息,计算机对这些信息进行信号处理,滤除高频噪声信息,然后对光谱信息进行归一化处理,利用峰值对应的波长值,计算晶圆膜厚。 随着技术的不断进步和应用领域的扩展,白光干涉膜厚仪的性能和功能将得到进一步提高。

光谱拟合法易于测量具有应用领域 ,由于使用了迭代算法,因此该方法的优缺点在很大程度上取决于所选择的算法。随着各种全局优化算法的引入,遗传算法和模拟退火算法等新算法被用于薄膜参数的测量。其缺点是不够实用,该方法需要一个较好的薄膜的光学模型(包括色散系数、吸收系数、多层膜系统),但是在实际测试过程中,薄膜的色散和吸收的公式通常不准确,尤其是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。在实际应用中只能使用简化模型,因此,通常全光谱拟合法不如极值法有效。另外该方法的计算速度慢也不能满足快速计算的要求。可以配合不同的软件进行分析和数据处理,例如建立数据库、统计数据等。本地膜厚仪生产商

白光干涉膜厚仪的应用非常广,特别是在半导体、光学、电子和化学等领域。光干涉膜厚仪出厂价

在白光干涉中,当光程差为零时,会出现零级干涉条纹。随着光程差的增加,光源谱宽范围内的每条谱线形成的干涉条纹之间会发生偏移,叠加后整体效果导致条纹对比度降低。白光干涉原理的测量系统精度高,可以进行测量。采用白光干涉原理的测量系统具有抗干扰能力强、动态范围大、快速检测和结构简单紧凑等优点。虽然普通的激光干涉与白光干涉有所区别,但它们也具有许多共同之处。我们可以将白光看作一系列理想的单色光在时域上的相干叠加,而在频域上观察到的就是不同波长对应的干涉光强变化曲线。光干涉膜厚仪出厂价

与膜厚仪相关的**
信息来源于互联网 本站不为信息真实性负责