为限度提高靶丸内爆压缩效率 ,期望靶丸所有几何参数、物性参数均为理想球对称状态。因此,需要对靶丸壳层厚度分布进行精密的检测。靶丸壳层厚度常用的测量手法有X射线显微辐照法、激光差动共焦法、白光干涉法等。下面分别介绍了各个方法的特点与不足,以及各种测量方法的应用领域。白光干涉法[30]是以白光作为光源,宽光谱的白光准直后经分光棱镜分成两束光,一束光入射到参考镜。一束光入射到待测样品。由计算机控制压电陶瓷(PZT)沿Z轴方向进行扫描,当两路之间的光程差为零时,在分光棱镜汇聚后再次被分成两束,一束光通过光纤传输,并由光谱仪收集,另一束则被传递到CCD相机,用于样品观测。利用光谱分析算法对干涉信号图进行分析得到薄膜的厚度。该方法能应用靶丸壳层壁厚的测量,但是该测量方法需要已知靶丸壳层材料的折射率,同时,该方法也难以实现靶丸壳层厚度分布的测量。该仪器的使用需要一定的专业技能和经验,操作前需要进行充分的培训和实践。膜厚仪厂家直销价格
白光干涉频域解调是利用频域分析解调信号的一种方法。与时域解调装置相比,测量装置几乎相同,只需将光强测量装置更换为光谱仪或CCD。由于时域解调中接收到的信号是一定范围内所有波长光强叠加,因此将频谱信号中各个波长的光强叠加起来即可得到它对应的时域接收信号。因此,频域的白光干涉条纹不仅包含了时域白光干涉条纹的所有信息,而且包括了时域干涉条纹中没有的波长信息。在频域干涉中,当两束相干光的光程差远大于光源的相干长度时,仍然可以在光谱仪上观察到频域干涉条纹。这是由于光谱仪内部的光栅具有分光作用,可以将宽谱光变成窄带光谱,从而增加光谱的相干长度。这种解调技术的优点是整个测量系统中没有使用机械扫描部件,因此在测量的稳定性和可靠性方面得到了显著提高。常见的频域解调方法包括峰峰值检测法、傅里叶解调法和傅里叶变换白光干涉解调法等。品牌膜厚仪经销批发白光干涉膜厚测量技术的优化需要对实验方法和算法进行改进 。
本章主要介绍了基于白光反射光谱和白光垂直扫描干涉联用的靶丸壳层折射率测量方法 。该方法利用白光反射光谱测量靶丸壳层光学厚度,利用白光垂直扫描干涉技术测量光线通过靶丸壳层后的光程增量,二者联立即可求得靶丸折射率和厚度数据。在实验数据处理方面,为解决白光干涉光谱中波峰位置难以精确确定和单极值点判读可能存在干涉级次误差的问题,提出MATLAB曲线拟合测定极值点波长以及利用干涉级次连续性进行干涉级次判定的数据处理方法。应用碳氢(CH)薄膜对测量结果的可靠性进行了实验验证。
利用包络线法计算薄膜的光学常数和厚度,但还存在很多不足,包络线法需要产生干涉波动,要求在测量波段内存在多个干涉极值点,且干涉极值点足够多,精度才高。理想的包络线是根据联合透射曲线的切点建立的,在没有正确方法建立包络线时,通常使用抛物线插值法建立,这样造成的误差较大。包络法对测量对象要求高,如果薄膜较薄或厚度不足情况下,会造成干涉条纹减少,干涉波峰个数较少,要利用干涉极值点建立包络线就越困难,且利用抛物线插值法拟合也很困难,从而降低该方法的准确度。其次,薄膜吸收的强弱也会影响该方法的准确度,对于吸收较强的薄膜,随干涉条纹减少,极大值与极小值包络线逐渐汇聚成一条曲线,该方法就不再适用。因此,包络法适用于膜层较厚且弱吸收的样品。操作需要一定的专业技能和经验,需要进行充分的培训和实践。
目前,常用的显微干涉方式主要有Mirau和Michelson两种方式。Mirau型显微干涉结构中,物镜和被测样品之间有两块平板,一块涂覆高反射膜的平板作为参考镜,另一块涂覆半透半反射膜的平板作为分光棱镜。由于参考镜位于物镜和被测样品之间,物镜外壳更加紧凑,工作距离相对较短,倍率一般为10-50倍。Mirau显微干涉物镜的参考端使用与测量端相同的显微物镜,因此不存在额外的光程差,因此是常用的显微干涉测量方法之一。Mirau显微干涉结构中,参考镜位于物镜和被测样品之间,且物镜外壳更加紧凑,工作距离相对较短,倍率一般为10-50倍。Mirau显微干涉物镜的参考端使用与测量端相同的显微物镜,因此不存在额外的光程差,同时该结构具有高分辨率和高灵敏度等特点,适用于微小样品的测量。因此,在生物医学、半导体工业等领域得到广泛应用。白光干涉膜厚测量技术可以对薄膜的厚度、反射率、折射率等光学参数进行测量。微米级膜厚仪应用
白光干涉膜厚测量技术可以实现对薄膜的快速测量和分析 。膜厚仪厂家直销价格
干涉测量法是基于光的干涉原理实现对薄膜厚度测量的光学方法,是一种高精度的测量技术。采用光学干涉原理的测量系统一般具有结构简单,成本低廉,稳定性好,抗干扰能力强,使用范围广等优点。对于大多数的干涉测量任务,都是通过薄膜表面和基底表面之间产生的干涉条纹的形状和分布规律,来研究干涉装置中待测物理量引入的光程差或者是位相差的变化,从而达到测量目的。光学干涉测量方法的测量精度可达到甚至优于纳米量级,而利用外差干涉进行测量,其精度甚至可以达到10-3nm量级。根据所使用光源的不同,干涉测量方法又可以分为激光干涉测量和白光干涉测量两大类。激光干涉测量的分辨率更高,但是不能实现对静态信号的测量,只能测量输出信号的变化量或者是连续信号的变化,即只能实现相对测量。而白光干涉是通过对干涉信号中心条纹的有效识别来实现对物理量的测量,是一种测量方式,在薄膜厚度的测量中得到了广泛的应用。膜厚仪厂家直销价格