本章介绍了基于白光反射光谱和白光垂直扫描干涉联用的靶丸壳层折射率测量方法。该方法利用白光反射光谱测量靶丸壳层光学厚度,利用白光垂直扫描干涉技术测量光线通过靶丸壳层后的光程增量,结合起来即可得到靶丸的折射率和厚度数据。在实验数据处理方面,为解决白光干涉光谱中波峰位置难以精确确定和单极值点判读可能存在干涉级次误差的问题,提出了利用MATLAB曲线拟合确定极值点波长以及根据干涉级次连续性进行干涉级次判断的数据处理方法。通过应用碳氢(CH)薄膜进行实验验证,证明该方法具有较高的测量精度和可靠性。通过测量反射光的干涉来计算膜层厚度,利用膜层与底材的反射率和相位差来实现测量。国产膜厚仪厂家
针对微米级工业薄膜厚度测量,开发了一种基于宽光谱干涉的反射式法测量方法,并研制了适用于工业应用的小型薄膜厚度测量系统,考虑了成本、稳定性、体积等因素要求。该系统结合了薄膜干涉和光谱共聚焦原理,采用波长分辨下的薄膜反射干涉光谱模型,利用经典模态分解和非均匀傅里叶变换的思想,提出了一种基于相位功率谱分析的膜厚解算算法。该算法能够有效利用全光谱数据准确提取相位变化,抗干扰能力强,能够排除环境噪声等假频干扰。经过对PVC标准厚度片、PCB板芯片膜层及锗基SiO2膜层的测量实验验证,结果表明该测厚系统具有1~75微米厚度的测量量程和微米级的测量不确定度,而且无需对焦,可以在10ms内完成单次测量,满足工业级测量需要的高效便捷的应用要求。薄膜膜厚仪找谁操作之前需要专业技能和经验的培训和实践。
常用白光垂直扫描干涉系统的原理:入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。
光学测厚方法结合了光学、机械、电子和计算机图像处理技术,以光波长为测量基准,从原理上保证了纳米级的测量精度。由于光学测厚是非接触式的测量方法,因此被用于精密元件表面形貌及厚度的无损测量。针对薄膜厚度的光学测量方法,可以按照光吸收、透反射、偏振和干涉等不同光学原理分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法各有优缺点和适用范围。因此,有一些研究采用了多通道式复合测量法,结合多种测量方法,例如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。白光干涉膜厚仪的工作原理是基于膜层与底材的反射率及其相位差,通过测量反射光的干涉来计算膜层厚度。
本文主要研究了如何采用白光干涉法、表面等离子体共振法和外差干涉法来实现纳米级薄膜厚度的准确测量,研究对象为半导体锗和贵金属金两种材料。由于不同材料薄膜的特性差异,所适用的测量方法也会有所不同。对于折射率高,在通信波段(1550nm附近)不透明的半导体锗膜,采用白光干涉的测量方法;而对于厚度更薄的金膜,由于其折射率为复数,且具有表面等离子体效应,所以采用基于表面等离子体共振的测量方法会更合适。为了进一步提高测量精度,本文还研究了外差干涉测量法,通过引入高精度的相位解调手段来检测P光与S光之间的相位差,以提高厚度测量的精度。操作需要一定的专业素养和经验,需要进行充分的培训和实践。如何测量薄膜厚度 膜厚仪
白光干涉膜厚仪是一种可用于测量透明和平行表面薄膜厚度的仪器。国产膜厚仪厂家
为了分析白光反射光谱的测量范围,进行了不同壁厚的靶丸壳层白光反射光谱测量实验。实验结果显示,对于壳层厚度为30μm的靶丸,其白光反射光谱各谱峰非常密集,干涉级次数值大;此外,由于靶丸壳层的吸收,壁厚较大的靶丸信号强度相对较弱。随着靶丸壳层厚度的进一步增加,其白光反射光谱各谱峰将更加密集,难以实现对各干涉谱峰波长的测量。为实现较大厚度靶丸壳层厚度的白光反射光谱测量,需采用红外宽谱光源和光谱探测器。对于壳层厚度为μm的靶丸,测量的波峰相对较少,容易实现壳层白光反射光谱谱峰波长的准确测量;随着靶丸壳层厚度的进一步减小,两干涉信号之间的光程差差异非常小,以至于光谱信号中只有一个干涉波峰,难以使用峰值探测的白光反射光谱方法测量其厚度。为了实现较小厚度靶丸壳层厚度的白光反射光谱测量,可采用紫外宽谱光源和光谱探测器提升其探测厚度下限。国产膜厚仪厂家