光具有相互叠加的特性,发生干涉的两束光在一些地方振动加强,而在另一些地方振动减弱,并产生规则的明暗交替变化。干涉测量需要满足三个相干条件:频率一致、振动方向一致、相位差稳定一致。与激光光源相比,白光光源的相干长度较短,通常在几微米到几十微米内。白光干涉的条纹有一个固定的位置,对应于光程差为零的平衡位置,并在该位置白光输出光强度具有最大值。通过探测光强最大值,可以实现样品表面位移的精密测量。白光垂直扫描干涉、白光反射光谱等技术,具有抗干扰能力强、稳定性好、动态范围大、结构简单、成本低廉等优点,并广泛应用于薄膜三维形貌测量和薄膜厚度精密测量等领域。增加光路长度可以提高仪器分辨率,但同时也会更容易受到振动等干扰,需要采取降噪措施。苏州膜厚仪生产厂家哪家好
光学测厚方法结合了光学、机械、电子和计算机图像处理技术,以光波长为测量基准,从原理上保证了纳米级的测量精度。由于光学测厚是非接触式的测量方法,因此被用于精密元件表面形貌及厚度的无损测量。针对薄膜厚度的光学测量方法,可以按照光吸收、透反射、偏振和干涉等不同光学原理分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法各有优缺点和适用范围。因此,有一些研究采用了多通道式复合测量法,结合多种测量方法,例如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。原装膜厚仪供应链随着技术的不断进步和应用领域的扩展,白光干涉膜厚仪的性能和功能将不断提高和拓展。
光纤白光干涉此次实验所设计的解调系统是通过检测干涉峰值的中心波长的移动实现的,所以光源中心波长的稳定性将对实验结果产生很大的影响。实验中我们所选用的光源是由INPHENIX公司生产的SLED光源,相对于一般的宽带光源具有输出功率高、覆盖光谱范围宽等特点。该光源采用+5V的直流供电,标定中心波长为1550nm,且其输出功率在一定范围内是可调的,驱动电流可以达到600mA。测量使用的是宽谱光源。光源的输出光功率和中心波长的稳定性是光源选取时需要重点考虑的参数。
白光干涉频域解调顾名思义是在频域分析解调信号,测量装置与时域解调装置几乎相同,只需把光强测量装置换为CCD或者是光谱仪,接收到的信号是光强随着光波长的分布。由于时域解调中接收到的信号是一定范围内所有波长的光强叠加,因此将频谱信号中各个波长的光强叠加,即可得到与它对应的时域接收信号。由此可见,频域的白光干涉条纹不仅包含了时域白光干涉条纹的所有信息,还包含了时域干涉条纹中没有的波长信息。在频域干涉中,当两束相干光的光程差远大于光源的相干长度时,仍可以在光谱仪上观察到频域干涉条纹。这是由于光谱仪内部的光栅具有分光作用,能够将宽谱光变成窄带光谱,从而增加了光谱的相干长度。这一解调技术的优点就是在整个测量系统中没有使用机械扫描部件,从而在测量的稳定性和可靠性上得到很大的提高。常见的频域解调方法有峰峰值检测法、傅里叶解调法以及傅里叶变换白光干涉解调法等。工作原理是基于膜层与底材反射率及相位差,通过测量反射光的干涉来计算膜层厚度。
在对目前常用的白光干涉测量方案进行比较研究后发现,当两个干涉光束的光程差非常小导致干涉光谱只有一个峰时,基于相邻干涉峰间距的解调方案不再适用。因此,我们提出了一种基于干涉光谱单峰值波长移动的测量方案,适用于极小光程差。这种方案利用干涉光谱的峰值波长会随光程差变化而周期性地出现红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。我们在光纤白光干涉温度传感系统上验证了这一测量方案,并成功测量出光纤端面半导体锗薄膜的厚度。实验表明,锗膜厚度为一定值,与台阶仪测量结果存在差异是由于薄膜表面本身并不光滑,台阶仪的测量结果只能作为参考值。误差主要来自光源的波长漂移和温度误差。该仪器的工作原理是通过测量反射光的干涉来计算膜层厚度,基于反射率和相位差。膜厚仪能测什么
操作需要一定的专业素养和经验,需要进行充分的培训和实践。苏州膜厚仪生产厂家哪家好
与激光光源相比以白光的宽光谱光源由于具有短相干长度的特点使得两光束只有在光程差极小的情况下才能发生干涉因此不会产生干扰条纹。同时由于白光干涉产生的干涉条纹具有明显的零光程差位置避免了干涉级次不确定的问题。本文以白光干涉原理为理论基础对单层透明薄膜厚度测量尤其对厚度小于光源相干长度的薄膜厚度测量进行了研究。首先从白光干涉测量薄膜厚度的原理出发、分别详细阐述了白光干涉原理和薄膜测厚原理。接着在金相显微镜的基础上构建了垂直型白光扫描系统作为实验中测试薄膜厚度的仪器并利用白光干涉原理对的位移量进行了标定。苏州膜厚仪生产厂家哪家好