自1986年E.Wolf证明了相关诱导光谱的变化以来,人们开始在理论和实验上进行探讨和研究。结果表明,动态的光谱位移可以产生新的滤波器,可应用于光学信号处理和加密领域。本文提出的基于白光干涉光谱单峰值波长移动的解调方案,可应用于当两光程差非常小导致干涉光谱只有一个干涉峰的信号解调,实现纳米薄膜厚度测量。在频域干涉中,当干涉光程差超过光源相干长度时,仍然可以观察到干涉条纹。这种现象是因为白光光源的光谱可以看成是许多单色光的叠加,每一列单色光的相干长度都是无限的。当使用光谱仪接收干涉光谱时,由于光谱仪光栅的分光作用,宽光谱的白光变成了窄带光谱,导致相干长度发生变化。Michelson干涉仪的光路长度支配了精度。本地膜厚仪厂家
白光光谱法具有测量范围大、连续测量时波动范围小的优点,可以解决干涉级次模糊识别的问题。但在实际测量中,由于误差、仪器误差和拟合误差等因素的影响,干涉级次的测量精度仍然受到限制,会出现干扰级次的误判和干扰级次的跳变现象。这可能导致计算得出的干扰级次m值与实际谱峰干涉级次m'(整数)之间存在误差。因此,本文设计了以下校正流程图,基于干涉级次的连续特性得到了靶丸壳层光学厚度的准确值。同时,给出了白光干涉光谱测量曲线。白光干涉膜厚仪找哪里Michelson干涉仪的光路长度决定了仪器的精度。
白光干涉时域解调方案需要借助机械扫描部件带动干涉仪的反射镜移动,补偿光程差,实现对信号的解调。光纤白光干涉仪的两输出臂分别作为参考臂和测量臂,作用是将待测的物理量转换为干涉仪两臂的光程差变化。测量臂因待测物理量而增加了一个未知的光程,参考臂则通过移动反射镜来实现对测量臂引入的光程差的补偿。当干涉仪两臂光程差ΔL=0时,即两干涉光束为等光程的时候,出现干涉极大值,可以观察到中心零级干涉条纹,而这一现象与外界的干扰因素无关,因而可据此得到待测物理量的值。干扰输出信号强度的因素包括:入射光功率、光纤的传输损耗、各端面的反射等。外界环境的扰动会影响输出信号的强度,但是对零级干涉条纹的位置不会产生影响。
白光干涉频域解调是利用频域分析解调信号的一种方法。与时域解调装置相比,测量装置几乎相同,只需将光强测量装置更换为光谱仪或CCD。由于时域解调中接收到的信号是一定范围内所有波长光强叠加,因此将频谱信号中各个波长的光强叠加起来即可得到它对应的时域接收信号。因此,频域的白光干涉条纹不仅包含了时域白光干涉条纹的所有信息,而且包括了时域干涉条纹中没有的波长信息。在频域干涉中,当两束相干光的光程差远大于光源的相干长度时,仍然可以在光谱仪上观察到频域干涉条纹。这是由于光谱仪内部的光栅具有分光作用,可以将宽谱光变成窄带光谱,从而增加光谱的相干长度。这种解调技术的优点是整个测量系统中没有使用机械扫描部件,因此在测量的稳定性和可靠性方面得到了显著提高。常见的频域解调方法包括峰峰值检测法、傅里叶解调法和傅里叶变换白光干涉解调法等。可测量大气压下薄膜厚度在1纳米到1毫米之间。
白光扫描干涉法利用白光作为光源,通过压电陶瓷驱动参考镜进行扫描,将干涉条纹扫过被测面,并通过感知相干峰位置来获取表面形貌信息。测量原理如图1-5所示。然而,在对薄膜进行测量时,其上下表面的反射会导致提取出的白光干涉信号呈现双峰形式,变得更为复杂。此外,由于白光扫描干涉法需要进行扫描过程,因此测量时间较长,且易受外界干扰。基于图像分割技术的薄膜结构测试方法能够自动分离双峰干涉信号,从而实现对薄膜厚度的测量。工作原理是基于膜层与底材反射率及相位差,通过测量反射光的干涉来计算膜层厚度。原装膜厚仪制造厂家
白光干涉膜厚仪是用于测量薄膜厚度的一种仪器,可用于透明薄膜和平行表面薄膜的测量。本地膜厚仪厂家
在激光惯性约束聚变(ICF)物理实验中,靶丸壳层折射率、厚度以及其分布参数是非常关键的参数。因此,实现对靶丸壳层折射率、厚度及其分布的精密测量对精密ICF物理实验研究非常重要。由于靶丸尺寸微小、结构特殊、测量精度要求高,因此如何实现对靶丸壳层折射率及其厚度分布的精密测量是靶参数测量技术研究中的重要内容。本文针对这一需求,开展了基于白光干涉技术的靶丸壳层折射率及厚度分布测量技术研究。精确测量靶丸壳层折射率、厚度及其分布是激光惯性约束聚变中至关重要的,对于ICF物理实验的研究至关重要。由于靶丸特殊的结构和微小的尺寸,以及测量的高精度要求,如何实现靶丸壳层折射率及其厚度分布的精密测量是靶参数测量技术研究中的重要目标。本文就此需求开展了基于白光干涉技术的靶丸壳层折射率及厚度分布测量技术的研究。本地膜厚仪厂家