光谱共焦基本参数
  • 品牌
  • 创视智能,tronsight
  • 型号
  • TS-C
  • 用途类型
  • 光谱位移传感器
  • 工作原理
  • 光谱共焦
  • 输出信号
  • 模拟型
  • 材质
  • 金属膜
  • 位移特征
  • 点位移
  • 测量范围
  • 中位移,小位移
光谱共焦企业商机

光谱共焦传感器使用复色光作为光源,可以达到微米级精度,并具备对漫反射或镜反射被测物体的测量功能。此外,光谱共焦位移传感器还可以实现对透明物体的单向厚度测量,其光源和接收光镜为同轴结构,避免光路遮挡,适用于直径4.5mm及以上的孔和凹槽的内部结构测量。在测量透明物体的位移时,由于被测物体的上下两个表面都会反射,而传感器接收到的位移信号是通过其上表面计算出来的,从而可能引起一定误差。本文通过对平行平板位移测量的误差分析,探讨了这一误差的来源和影响因素。光谱共焦技术可以实现高分辨率的成像和分析;线光谱共焦原理

光谱共焦位移传感器是一种基于共焦原理,采用复色光作为光源的传感器,其测量精度可达到纳米级,适用于测量物体表面漫反射或反射的情况。此外,光谱共焦位移传感器还可以用于单向厚度测量透明物体。由于其具有高精度的测量位移特性,因此对于透明物体的单向厚度测量以及高精度的位移测量都有着很好的应用前景。本文将光谱共焦位移传感器应用于位移测量中,并通过实验验证,表明其能够满足高精度的位移测量要求,这对于将整个系统小型化、产品化具有重要意义。线光谱共焦原理高精度光谱共焦位移传感器是一种基于共焦原理实现的位移测量技术。

靶丸内表面轮廓是激光核聚变靶丸关键参数之一,需要进行精密检测。本文基于白光共焦光谱和精密气浮轴系,分析了靶丸内表面轮廓测量的基本原理,并建立了相应的白光共焦光谱测量方法。同时,作者还搭建了靶丸内表面轮廓测量实验装置,并利用靶丸光学图像的辅助调心方法,实现了靶丸内表面低阶轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线。作者在实验中验证了测量结果的可靠性,并进行了不确定度分析,结果表明,白光共焦光谱能够实现靶丸内表面低阶轮廓的精密测量。

光谱共焦测量原理是使用多透镜光学系统将多色白光聚焦到目标表面上。透镜的排列方式是通过控制色差(像差)将白光分散成单色光。每个波长都有一定的偏差(特定距离)进行工厂校准。只有精确聚焦在目标表面或材料上的波长才能用于测量。通过共焦孔径反射到目标表面的光会被光谱仪检测并处理。漫反射表面和镜面反射表面都可以使用光谱共焦原理进行测量。共焦测量提供纳米级分辨率,并且几乎与目标材料分开运行。传感器的测量范围内有一个非常小的、恒定的光斑尺寸。微型径向和轴向共焦版本可用于测量钻孔或钻孔内壁的表面,以及测量窄孔、小间隙和空腔。光谱共焦技术可以实现对样品的三维成像和分析;

谱共焦测量技术由于其高精度、允许被测表面有更大的倾斜角、测量速度快、实时性高、对被测表面状况要求低、以及高分辨率的独特优势,迅速成为工业测量的热门传感器,在生物医学、材料科学、半导体制造、表面工程研究、精密测量、3C电子等领域得到广泛应用。

本次测量场景使用的是创视智能TS-C10000光谱共焦传感头和CCS控制器。TS-C系列光谱共焦位移传感器能够实现0.025µm的重复精度,±0.02% of F.S.的线性精度,10kHz的采样速度,以及±65°的测量角度,能够适应镜面、透明、半透明、膜层、金属粗糙面、多层玻璃等材料表面,支持485、USB、以太网、模拟量的数据传输接口。 光谱共焦位移传感器具有非接触式测量的优势,可以在微观尺度下进行精确的位移测量;线阵光谱共焦行情

光谱共焦三维形貌仪用超大色散线性物镜组设计是一项重要的研究内容;线光谱共焦原理

采用对比测试方法,首先对基于白光共焦光谱技术的靶丸外表面轮廓测量精度进行了考核,为了便于比较,将原子力显微镜轮廓仪的测量数据进行了偏移。结果得出,二者的低阶轮廓整体相似,局部的轮廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精确测量圆周轮廓结果不一致;此外,白光共焦光谱的信噪比较原子力低,这表明白光共焦光谱适用于靶丸表面低阶的轮廓误差的测量。从靶丸外表面轮廓原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线中可以看出,在模数低于100的功率谱范围内,两种方法的测量结果一致性较好,当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这也反应了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于光谱传感器Z向分辨率比原子力低一个量级,同时,受环境振动、光谱仪采样率及样品表面散射光等因素的影响,共焦光谱检测数据高频随机噪声可达100nm左右。线光谱共焦原理

与光谱共焦相关的文章
与光谱共焦相关的产品
与光谱共焦相关的资讯
与光谱共焦相关的**
产品推荐
相关资讯
信息来源于互联网 本站不为信息真实性负责