光学测厚方法集光学、机械、电子、计算机图像处理技术为一体,以其光波长为测量基准,从原理上保证了纳米级的测量精度。同时,光学测厚作为非接触式的测量方法,被广泛应用于精密元件表面形貌及厚度的无损测量。其中,薄膜厚度光学测量方法按光吸收、透反射、偏振和干涉等光学原理可分为椭圆偏振法、分光光度法、干涉法等多种测量方法。不同的测量方法,其适用范围各有侧重,褒贬不一。因此结合多种测量方法的多通道式复合测量法也有研究,如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。白光干涉膜厚仪的工作原理是基于膜层与底材的反射率及其相位差,通过测量反射光的干涉来计算膜层厚度。高精度膜厚仪能测什么
在激光惯性约束核聚变实验中,靶丸的物性参数和几何参数是靶丸制备工艺改进和仿真模拟核聚变实验过程的基础,因此如何对靶丸多个参数进行高精度、同步、无损的综合检测是激光惯性约束核聚变实验中的关键问题。以上各种薄膜厚度及折射率的测量方法各有利弊,但针对本文实验,仍然无法满足激光核聚变技术对靶丸参数测量的高要求,靶丸参数测量存在以下问题:不能对靶丸进行破坏性切割测量,否则,被破坏后的靶丸无法用于于下一步工艺处理或者打靶实验;需要同时测得靶丸的多个参数,不同参数的单独测量,无法提供靶丸制备和核聚变反应过程中发生的结构变化现象和规律,并且效率低下、没有统一的测量标准。靶丸属于自支撑球形薄膜结构,曲面应力大、难展平的特点导致靶丸与基底不能完全贴合,在微区内可看作类薄膜结构。薄膜膜厚仪生产厂家哪家好它可测量大气压下1纳米到1毫米范围内的薄膜厚度。
在初始相位为零的情况下,当被测光与参考光之间的光程差为零时,光强度将达到最大值。为了探测两个光束之间的零光程差位置,需要使用精密Z向运动台带动干涉镜头作垂直扫描运动,或移动载物台。在垂直扫描过程中,可以用探测器记录下干涉光强,得到白光干涉信号强度与Z向扫描位置(两光束光程差)之间的变化曲线。通过干涉图像序列中某波长处的白光信号强度随光程差变化的示意图,可以找到光强极大值位置,即为零光程差位置。通过精确确定零光程差位置,可以实现样品表面相对位移的精密测量。同时,通过确定最大值对应的Z向位置,也可以获得被测样品表面的三维高度。
折射率分别为1.45和1.62的2块玻璃板,使其一端相接触,形成67的尖劈.将波长为550nm的单色光垂直投射在劈上,并在上方观察劈的干涉条纹,试求条纹间距。
我们可以分2种可能的情况来讨论:
一般玻璃的厚度可估计为1mm的量级,这个量级相对于光的波长550nm而言,应该算是膜厚e远远大于波长^的厚玻璃了,所以光线通过上玻璃板时应该无干涉现象,同理光线通过下玻璃板时也无干涉现象.空气膜厚度因劈角很小而很薄,与波长可比拟,所以光线通过空气膜应该有干涉现象,在空气膜的下表面处有一半波损失,故光程差应该为2n2e+λ/2.
(2)假设玻璃板厚度的量级与可见光波长量级可比拟,当单色光垂直投射在劈尖上时,上玻璃板能满足形成薄膜干涉的条件,其光程差为2n2e+λ/2,下玻璃板也能满足形成薄膜于涉的条件,光程差为2n1h+λ/2,但由于玻璃板膜厚均匀,h不变,人射角i=俨也不变,故玻璃板形成的薄膜干涉为等倾又等厚干涉条纹,要么玻璃板全亮,要么全暗,它不会影响空气劈尖干涉条纹的位置和条纹间距。空气劈尖干涉光程差仍为2n2e+λ/2,但玻璃板会影响劈尖干涉条纹的亮度对比度. 它可以用不同的软件进行数据处理和分析,比如建立数据库、统计数据等。
光纤白光干涉此次实验所设计的解调系统是通过检测干涉峰值的中心波长的移动实现的,所以光源中心波长的稳定性将对实验结果产生很大的影响。实验中我们所选用的光源是由INPHENIX公司生产的SLED光源,相对于一般的宽带光源具有输出功率高、覆盖光谱范围宽等特点。该光源采用+5V的直流供电,标定中心波长为1550nm,且其输出功率在一定范围内是可调的,驱动电流可以达到600mA。测量使用的是宽谱光源。光源的输出光功率和中心波长的稳定性是光源选取时需要重点考虑的参数。白光干涉膜厚仪需要校准。国内膜厚仪行业应用
随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展。高精度膜厚仪能测什么
白光扫描干涉法采用白光为光源,压电陶瓷驱动参考镜进行扫描,干涉条纹扫过被测面,通过感知相干峰位置来获得表面形貌信息。对于薄膜的测量,上下表面形貌、粗糙度、厚度等信息能通过一次测量得到,但是由于薄膜上下表面的反射,会使提取出来的白光干涉信号出现双峰形式,变得更复杂。另外,由于白光扫描法需要扫描过程,因此测量时间较长而且易受外界干扰。基于图像分割技术的薄膜结构测试方法,实现了对双峰干涉信号的自动分离,实现了薄膜厚度的测量。高精度膜厚仪能测什么