根据以上分析,白光干涉时域解调方案的优点如下:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动、光源波长的漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,因此扫描装置的分辨率会影响系统的精度。采用这种解调方案的测量分辨率一般在几个微米,要达到亚微米的分辨率则主要受机械扫描部件的分辨率和稳定性所限制。文献[46]报道的位移扫描的分辨率可以达到0.54微米。然而,当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到了限制。可测量大气压下薄膜厚度在1纳米到1毫米之间。薄膜膜厚仪应用
与激光光源相比以白光的宽光谱光源由于具有短相干长度的特点使得两光束只有在光程差极小的情况下才能发生干涉因此不会产生干扰条纹。同时由于白光干涉产生的干涉条纹具有明显的零光程差位置避免了干涉级次不确定的问题。本文以白光干涉原理为理论基础对单层透明薄膜厚度测量尤其对厚度小于光源相干长度的薄膜厚度测量进行了研究。首先从白光干涉测量薄膜厚度的原理出发、分别详细阐述了白光干涉原理和薄膜测厚原理。接着在金相显微镜的基础上构建了垂直型白光扫描系统作为实验中测试薄膜厚度的仪器并利用白光干涉原理对的位移量进行了标定。白光干涉膜厚仪的精度可配合不同的软件进行数据处理和分析,如建立数据库、统计数据等。
自上世纪60年代起,利用X及β射线、近红外光源开发的在线薄膜测厚系统广泛应用于西方先进国家的工业生产线中。到20世纪70年代后,为满足日益增长的质检需求,电涡流、电磁电容、超声波、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术取得巨大突破,以椭圆偏振法和光度法为展示的光学检测技术以高精度、低成本、轻便环保、高速稳固为研发方向不断迭代更新,迅速占领日用电器及工业生产市场,并发展出依据用户需求个性化定制产品的能力。其中,对于市场份额占比较大的微米级薄膜,除要求测量系统不仅具有百纳米级的测量准确度及分辨力以外,还要求测量系统在存在不规则环境干扰的工业现场下,具备较高的稳定性和抗干扰能力。
目前,常用的显微干涉方式主要有Mirau和Michelson两种方式。Mirau型显微干涉结构中,物镜和被测样品之间有两块平板,一块涂覆高反射膜的平板作为参考镜,另一块涂覆半透半反射膜的平板作为分光棱镜。由于参考镜位于物镜和被测样品之间,物镜外壳更加紧凑,工作距离相对较短,倍率一般为10-50倍。Mirau显微干涉物镜的参考端使用与测量端相同的显微物镜,因此不存在额外的光程差,因此是常用的显微干涉测量方法之一。Mirau显微干涉结构中,参考镜位于物镜和被测样品之间,且物镜外壳更加紧凑,工作距离相对较短,倍率一般为10-50倍。Mirau显微干涉物镜的参考端使用与测量端相同的显微物镜,因此不存在额外的光程差,同时该结构具有高分辨率和高灵敏度等特点,适用于微小样品的测量。因此,在生物医学、半导体工业等领域得到广泛应用。白光干涉膜厚测量技术可以通过对干涉图像的分析实现对薄膜的缺陷检测和分析。
基于白光干涉法的晶圆膜厚测量装置,其特征在于:该装置包括白光光源、显微镜、分束镜、干涉物镜、光纤传输单元、准直器、光谱仪、USB传输线、计算机;光谱仪主要包括六部分,分别是:光纤入口、准直镜、光栅、聚焦镜、区域检测器、带OFLV滤波器的探测器;
光源发出的白光经准直镜扩束准直后成平行光,经分束镜射入Michelson干涉物镜,准直透镜将白光缩束准直后垂直照射到待测晶圆上,反射光之间相互发生干涉,经准直镜后干涉光强进入光纤耦合单元,完成干涉部分;
光纤传输的干涉信号进入光谱仪,计算机定时从光谱仪中采集光谱信号,获取诸如光强、反射率等信息,计算机对这些信息进行信号处理,滤除高频噪声信息,然后对光谱信息进行归一化处理,利用峰值对应的波长值,计算晶圆膜厚。 增加光路长度可以提高仪器分辨率,但同时也会更容易受到振动等干扰,需要采取降噪措施。高精度膜厚仪找哪家
白光干涉膜厚仪是一种可用于测量透明和平行表面薄膜厚度的仪器。薄膜膜厚仪应用
用峰峰值法处理光谱数据时,被测光程差的分辨率取决于光谱仪或CCD的分辨率。我们只需要获取相邻的两个干涉峰值处的波长信息,即可确定光程差,不必关心此波长处的光强大小,从而降低了数据处理难度。此外,也可以利用多组相邻干涉光谱极值对应的波长分别求出光程差,然后再求平均值作为测量结果,以提高该方法的测量精度。但是,峰峰值法存在着一些缺点:当使用宽带光源时,不可避免地会有与光源同分布的背景光叠加在接收光谱中,从而引起峰值处波长的改变,从而引入测量误差。同时,当两干涉信号之间的光程差很小,导致其干涉光谱只有一个干涉峰时,此法便不再适用。薄膜膜厚仪应用