汽车传动系统中的转轴需满足高扭矩、低噪音的运行要求。MIM工艺通过精密模具设计和烧结收缩率补偿技术,将转轴的同轴度误差控制在0.01mm以内,圆跳动误差≤0.02mm。例如,在新能源汽车减速器转轴制造...
金属粉末注射成型(MIM)是一种将粉末冶金与塑料注射成型技术深度融合的近净成型工艺,尤其适用于五金工具领域复杂结构件的高效制造。其关键流程包括:将微米级金属粉末(粒径2-20μm)与热塑性粘结剂(如聚...
MIM技术在五金工具大批量制造中具有明显成本优势。以年产50万件的套筒扳手为例,MIM工艺的单件成本(含模具分摊)约为1.2美元,较传统锻造+机加工方案(单件成本2.5美元)降低52%,且生产周期从2...
展望未来,金属粉末注射加工技术将朝着多个方向发展。在材料方面,将不断开发新型的金属粉末材料,如高熵合金粉末、非晶合金粉末等,以满足不同领域对零件性能的特殊要求。在工艺上,将进一步优化脱脂和烧结工艺,实...
MIM技术兼容多种金属材料体系,涵盖低合金钢、不锈钢、钛合金、镍基合金等,能够根据应用场景定制材料性能。例如,在消费电子领域,MIM常采用316L不锈钢制造手机转轴,利用其优异的耐腐蚀性和抗疲劳性,满...
转轴金属粉末注射成型(MIM)技术通过将微米级金属粉末与高分子粘结剂混合,经加热塑化后注入模具型腔,形成具有三维复杂结构的生坯,再通过脱脂和烧结工艺获得高密度金属零件。该技术结合了塑料注射成型的灵活性...
展望未来,金属粉末注射加工技术将朝着多个方向发展。在材料方面,将不断开发新型的金属粉末材料,如高熵合金粉末、非晶合金粉末等,以满足不同领域对零件性能的特殊要求。在工艺上,将进一步优化脱脂和烧结工艺,实...
金属粉末注射加工在发展过程中面临着一些技术挑战。一方面,原材料成本较高,高性能的金属粉末和质量的粘结剂价格不菲,增加了产品的制造成本。另一方面,脱脂和烧结过程容易出现缺陷,如脱脂不完全会导致烧结时零件...
消费电子产品的轻薄化趋势对转轴设计提出更高挑战。以折叠屏手机转轴为例,其需承受20万次以上的开合测试,同时要求零件壁厚小于0.5mm、表面粗糙度Ra≤0.4μm。MIM技术通过优化粉末粒径分布(2-1...
五金工具对结构复杂性和功能集成性要求极高,而MIM技术凭借其优异的成型能力成为关键解决方案。以棘轮扳手为例,传统工艺需通过机加工制造棘轮齿、方向切换机构和手柄连接部,工序多达12道,且内齿小模数只能做...
汽车工业对零部件的轻量化、高的强度和复杂结构集成需求推动MIM技术广泛应用。在发动机系统中,MIM制造的涡轮增压器叶片厚度0.5mm,却能承受1000℃高温和200m/s的气流冲击,通过优化粉末粒径(...
喂料制备是MIM工艺的基础,其质量直接影响终零件的性能。金属粉末需选择高纯度(杂质含量<0.1%)、球形度好(流动性佳)的原料,例如316L不锈钢粉末的氧含量需控制在200ppm以下,以避免烧结时产生...