双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

双光子吸收理论早在1931年就由诺奖得主提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。WinfriedDenk初使用的光源是染料飞秒激光器(100fs脉宽、630nm可见光波长)。虽然染料激光器对于实验室演示尚可,但是使用很不方便所以远未实现商用。很快双光子显微镜的标配光源就变成了飞秒钛宝石激光器。除了固态光源优势,钛宝石激光器还具有较宽的近红外波长调谐范围,而近红外相比可见光穿透更深,对生物样品损伤更小。双光子显微镜使用长波长脉冲光,是通过物镜汇聚的。国内ultima双光子显微镜光损伤

国内ultima双光子显微镜光损伤,双光子显微镜

光学显微镜和电子显微镜本质的区别在于,光学显微镜:用的是可见光电子显微镜:用的是高频电子射波有什么区别,在于一个基本的原理,光的衍射。。。光波是一个有趣的东西,其中有一项,如果物体的体积小于光的波长,光一般可以绕过去,不发生明显变化。也就是说,有这个物体和没这个物体,在这种情况下,光是不会发生明显改变的。可见光的波长(肉眼):380~780纳米,也就是,如果比380纳米还要小的东西,用光学显微镜,无论你放大多少倍,也是看不见的。因为光绕过去了。。。光的衍射为了克服这个问题,科学家用波长更短的光去照射物体,也是就被观测物。比如10纳米级的光,这样,就能看到我们用肉眼无论如何都看不见的东西。这就是电子显微镜多说一句,光速是不变的。光速=频率×波长。波长越短,频率越大。。频率越大,光波的能量越大。这就是为什么电子显微镜的功率越大,能看到的东西越小。颜色取决于物体能反射光的波长的长短当你看到的物体小于较小可见光的波长,那它就是没有颜色的。。。因为颜色是肉眼对于可见光频率在大脑中的投影。。。。所以只能把他们统一变为黑白。。。没有颜色不是透明的意思,它们不是肉眼可见颜色的定义中包含的。布鲁克双光子显微镜磷光寿命计数双光子显微镜为什么穿透能力强?

国内ultima双光子显微镜光损伤,双光子显微镜

和很多伟大的科学发明一样,双光子显微镜的出现也有一点偶然,但正是那瞬间的灵感为生物科学尤其是神经科学带来了一种**性的成像技术:双光子激发荧光显微镜。1990年初,当WinfriedDenk刚从康奈尔大学博士毕业准备前往瑞士读博后时,他看了一本关于激光扫描显微镜的书,从中了解到非线性光学效应——强光和物质的相互作用。当时,Denk有同事研究生物样品中的钙离子但苦于没有强大的紫外激光器和光学元件,于是他就想到如果使用双光子吸收就能够绕开紫外,换言之,与其通过一个紫外光子激发标记的钙离子,通过两个双倍波长的可见光光子也能激发相同的荧光。有了想法后马上实验。借了一套染料飞秒激光器,Denk联合他的导师WattWebb及其博士生JamesStrickler只用六个小时就完成了实验搭建,采集数据则用了两到三天,于是一篇里程碑式的文章就此诞生了。

激光共聚扫描显微镜脱离了传统光学显微镜的场光源和局部平面成像模式,采用激光束作光源,激光束经照明,经由分光镜反射至物镜,并聚焦于样品上,对标本焦平面上每一点进行扫描。组织样品中的荧光物质受到刺激后发出的荧光经原来入射光路直接反向回到分光镜,通过探测***时先聚焦,然后被光探头收集,转化为信号输送到计算机进行处理。这个装置能让通过探测***的只有焦平面上发出的荧光,使成像更为清晰准确,同时通过改变物镜的焦距,能对不同焦平面进行扫描,通过计算机绘出普通显微镜无法观测的三维图像。双光子显微镜有这么多优点,那么双光子显微镜有哪些应用呢?

国内ultima双光子显微镜光损伤,双光子显微镜

通过对微型光学系统的重新设计,FHIRM-TPM 2.0成像视野扩大至420×420平方微米,微型物镜的工作距离扩展至1毫米,以实现非侵入式成像;嵌入了可拆卸的快速轴向扫描模块,实现了180微米深度的三维体成像和多平面快速切换的实时成像。该模块由一个快速的电动变焦透镜和一对中继透镜组成,在不同深度成像时保持放大倍率恒定。其中,变焦模块重量1.8克,研究人员可根据实验需求自由拆卸。此外,新版微型化成像探头还可整体即时拔插,极大地简化了实验操作,避免了长周期实验时对动物的干扰。在重复装卸探头追踪同一批神经元时,视场旋转角小于0.07弧度,边界偏差小于35微米。双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。国内2PPLUS双光子显微镜授权公司

双光子显微镜在各领域研究中已有许多成功实例;国内ultima双光子显微镜光损伤

光学显微镜从1590年发明以来,不断发展,促进生命科学日新月异的发现,帮助人类逐层打开生命本质的大门。同时,生命科学的发展不断给光学显微镜提出新的要求,促使成像理论和技术持续更新迭代。科学进入21世纪,人们已经不满足于在体外研究细胞和组织,需要能够更真实地探索生命,在体内实时观察细胞的发生和变化。此时,双光子显微镜进入了科学家的视野。在高光子密度的情况下,荧光分子可以同时吸收两个长波长的光子,然后发射出一个波长较短的光子,其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的(图1)。如烟酰胺腺嘌呤二核苷酸(NADH),在单光子激发时,在波长为350 nm光的激发下发出450 nm荧光;而在双光子激发时,可采用700 nm的激发光得到450 nm荧光。国内ultima双光子显微镜光损伤

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责