2020年12月22日,临研所、病理科和科研处邀请北京大学王爱民副教授做了题目为“新一代微型双光子显微成像系统介绍及其在临床医疗诊断”的学术报告。学术报告由临研所医学实验研究平台潘琳老师主持。王爱民,北京大学信息科学技术学院副教授,毕业于北京大学物理系,获学士、硕士学位,后于英国巴斯大学物理系获博士学位。该研究组研发的微型双光子显微镜,第1次在国际上获得了小鼠大脑神经元和神经突触清晰稳定的动态信号,该成果获得了2017年度“中国光学进展”和“中国科学进展”,并被NatureMethods评为2018年度“年度方法--无限制行为动物成像”。目前,该研究组正在研究新一代双光子显微成像技术在临床诊断中的应用,为未来即时病理、离体组织检测、术中诊断等提供新的影像手段和分析方法。双光子显微镜能够进行指标成像;国内investigator双光子显微镜用途
和很多伟大的科学发明一样,双光子显微镜的出现也有一点偶然,但正是那瞬间的灵感为生物科学尤其是神经科学带来了一种**性的成像技术:双光子激发荧光显微镜。1990年初,当WinfriedDenk刚从康奈尔大学博士毕业准备前往瑞士读博后时,他看了一本关于激光扫描显微镜的书,从中了解到非线性光学效应——强光和物质的相互作用。当时,Denk有同事研究生物样品中的钙离子但苦于没有强大的紫外激光器和光学元件,于是他就想到如果使用双光子吸收就能够绕开紫外,换言之,与其通过一个紫外光子激发标记的钙离子,通过两个双倍波长的可见光光子也能激发相同的荧光。有了想法后马上实验。借了一套染料飞秒激光器,Denk联合他的导师WattWebb及其博士生JamesStrickler只用六个小时就完成了实验搭建,采集数据则用了两到三天,于是一篇里程碑式的文章就此诞生了。国内ultima2PPLUS双光子显微镜荧光寿命计数双光子显微镜成像技术及不同转基因小鼠开展对多种脏器的成像研究。
光学显微镜和电子显微镜本质的区别在于,光学显微镜:用的是可见光电子显微镜:用的是高频电子射波有什么区别,在于一个基本的原理,光的衍射。。。光波是一个有趣的东西,其中有一项,如果物体的体积小于光的波长,光一般可以绕过去,不发生明显变化。也就是说,有这个物体和没这个物体,在这种情况下,光是不会发生明显改变的。可见光的波长(肉眼):380~780纳米,也就是,如果比380纳米还要小的东西,用光学显微镜,无论你放大多少倍,也是看不见的。因为光绕过去了。。。光的衍射为了克服这个问题,科学家用波长更短的光去照射物体,也是就被观测物。比如10纳米级的光,这样,就能看到我们用肉眼无论如何都看不见的东西。这就是电子显微镜多说一句,光速是不变的。光速=频率×波长。波长越短,频率越大。。频率越大,光波的能量越大。这就是为什么电子显微镜的功率越大,能看到的东西越小。颜色取决于物体能反射光的波长的长短当你看到的物体小于较小可见光的波长,那它就是没有颜色的。。。因为颜色是肉眼对于可见光频率在大脑中的投影。。。。所以只能把他们统一变为黑白。。。没有颜色不是透明的意思,它们不是肉眼可见颜色的定义中包含的。
共聚焦显微可以呈现这么漂亮的图像,是不是什么样品都可以用共聚焦显微镜拍拍拍.....得到各种各样清晰漂亮的图像呢?答案是否定的,任何事物都有优缺点,何况一台仪器呢,共聚焦显微镜也是有自己的局限,共聚焦有哪些局限呢:1.共聚焦显微镜只能拍摄约200um以内的的样品,对于厚的或者样品不能进拍摄;2. 共聚焦显微镜由于是逐点进行扫描,对样品的光毒性还是比较大的,特别是拍摄活细胞样品时就更容易对样品进行淬灭;3. 由于光照射的区域几乎能通过这个Z轴的层面,所以对于空间定点光刺激的实验定点位置就不是特别精确;并且激光共聚焦显微镜没有纯紫外进行激发,对于一些特殊激发波长的实验,效率非常低。双光子显微镜使用的是高能量锁模脉冲器。
在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3),相关技术文档同步发表于Protocol Exchange (DOI: 10.1038/protex.2017.048),并已申请多项。双光子显微镜的原理是什么?进口激光荧光双光子显微镜联系方式
双光子显微镜有哪些分类呢?国内investigator双光子显微镜用途
使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。国内investigator双光子显微镜用途