双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

随着技术的发展,双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。要想让激发激光进入更深的层面,大致可从两个方面入手,装置优化与标本改造。关于装置优化,我们可以把激光束变得更细,使能量更加集中,就能让激光穿透更深。关于标本,其中影响光传播的主要是物质吸收和散射,解决这个问题,我们需要对样本进行透明化处理。一种方法是运用某种物质将标本浸泡,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是运用电泳将脂质电解,让标本“透明度”提高。


双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子。布鲁克双光子显微镜

布鲁克双光子显微镜,双光子显微镜

和很多伟大的科学发明一样,双光子显微镜的出现也有一点偶然,但正是那瞬间的灵感为生物科学尤其是神经科学带来了一种**性的成像技术:双光子激发荧光显微镜。

1990年初,当Winfried Denk刚从康奈尔大学博士毕业准备前往瑞士读博后时,他看了一本关于激光扫描显微镜的书,从中了解到非线性光学效应——强光和物质的相互作用。当时,Denk有同事研究生物样品中的钙离子但苦于没有强大的紫外激光器和光学元件,于是他就想到如果使用双光子吸收就能够绕开紫外,换言之,与其通过一个紫外光子激发标记的钙离子,通过两个双倍波长的可见光光子也能激发相同的荧光。

有了想法后马上实验。借了一套染料飞秒激光器,Denk联合他的导师Watt Webb及其博士生James Strickler只用六个小时就完成了实验搭建,采集数据则用了两到三天,于是一篇里程碑式的文章就此诞生了。 布鲁克双光子显微镜双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。

布鲁克双光子显微镜,双光子显微镜

双光子显微镜是结合了双光子激发技术和激光扫描共聚显微镜的一种新型荧光显微镜,其原理大致是这样的:

首先,让我们来看看什么是荧光显微镜。荧光显微镜是以紫外线为光源,照射被检物体上的荧光物质或是荧光染料,使其发出荧光。相比普通光学显微镜,荧光显微镜运用了波长更短的紫外线,再将可见光过滤掉,提高了分辨力率。而当被检物体过厚时,从不同深度发出的荧光都会打在物镜上,使观察到的像模糊、发虚,无法清楚的知道被检物体的结构。而激光扫描共聚显微镜就是在荧光显微镜的基础上,增加了激光扫描装置,从而解决了上述问题。

激光共聚扫描显微镜脱离了传统光学显微镜的场光源和局部平面成像模式,采用激光束作光源,激光束经照明,经由分光镜反射至物镜,并聚焦于样品上,对标本焦平面上每一点进行扫描。组织样品中的荧光物质受到刺激后发出的荧光经原来入射光路直接反向回到分光镜,通过探测***时先聚焦,然后被光探头收集,转化为信号输送到计算机进行处理。这个装置能让通过探测***的只有焦平面上发出的荧光,使成像更为清晰准确,同时通过改变物镜的焦距,能对不同焦平面进行扫描,通过计算机绘出普通显微镜无法观测的三维图像。

双光子显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。

双(多)光子成像优势在于,具有更深的组织穿透深度,利用红外光,能够在层面检测极限达1mm的组织区域;因信号背景比高,而具有更高的对比度;因激发体积小,具有定点激发的特性,具有更少的光毒性;激发波长由紫外、可见光调整为红外激发,能够更加安全。 双光子显微镜在组织透明化成像中应用;

布鲁克双光子显微镜,双光子显微镜

光学显微镜从1590年发明以来,不断发展,促进生命科学日新月异的发现,帮助人类逐层打开生命本质的大门。同时,生命科学的发展不断给光学显微镜提出新的要求,促使成像理论和技术持续更新迭代。科学进入21世纪,人们已经不满足于在体外研究细胞和组织,需要能够更真实地探索生命,在体内实时观察细胞的发生和变化。此时,双光子显微镜进入了科学家的视野。在高光子密度的情况下,荧光分子可以同时吸收两个长波长的光子,然后发射出一个波长较短的光子,其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的(图1)。如烟酰胺腺嘌呤二核苷酸(NADH),在单光子激发时,在波长为350 nm光的激发下发出450 nm荧光;而在双光子激发时,可采用700 nm的激发光得到450 nm荧光。双光子显微镜成像技术及不同转基因小鼠开展对多种脏器的成像研究。布鲁克双光子显微镜的原理

双光子显微镜能够进行光裂解、光转染和光损伤等光学操纵。布鲁克双光子显微镜

双光子吸收理论早在1931年就由诺奖得主Maria Goeppert Mayer提出,30年后因为有了激光才得到实验验证,但是到Winfried Denk发明双光子显微镜又用了将近30年。

要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100 MHz)输出超短脉冲(100 fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。 布鲁克双光子显微镜

因斯蔻浦(上海)生物科技有限公司致力于仪器仪表,是一家服务型的公司。公司业务涵盖nVista,nVoke,3D bioplotte,invivo等,价格合理,品质有保证。公司秉持诚信为本的经营理念,在仪器仪表深耕多年,以技术为先导,以自主产品为重点,发挥人才优势,打造仪器仪表良好品牌。在社会各界的鼎力支持下,持续创新,不断铸造***服务体验,为客户成功提供坚实有力的支持。

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责