在金属3D打印粉末中,粉末的形状以及粉末的颗粒范围,都会对打印产生影响。常见的颗粒形状有球形、近球形、片状、针状及其他不规则形状等。不规则的颗粒的优势是具有更大的表面积,有利于增加烧结驱动。球形度高的粉体颗粒则流动性好,送粉铺粉均匀,有利于提升制件的致密度及均匀度。一般而言,球形度越高,粉末颗粒的流动性也越好。对于粉末颗粒,通常金属3D打印使用的粉末粒度范围是15~53μm(细粉)、53~105μm(粗粉),部分场合下可放宽至105~150μm(粗粉)。不同能量源的金属打印机对粉末粒度要求不同。细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。金属3D打印使汽车结构轻量化。广州模具3D打印机介绍
金属3D打印是区别于传统的切削加工的增材制造方式,通过金属粉末材料的层层累积熔融成型,极大的避免了传统减材制造中的产生的材料浪费,对节能环保及资源的可持续发展大计有着重要的战略意义。例如,利用金属3D打印生产部件能够帮助铸造使用的砂模节能超40%。近年来,3D打印技术应用逐渐从初的科研延展至工业、汽车、航空航天等诸多领域,特别是在医疗和教育领域的作用日益凸显。借助3D打印技术,各行业各领域不但可以极大降低产品生产成本,缩短产品研发生产周期,而且3D打印天然的绿色制造方式,更有利于节能减排。3D打印正在推动着传统产业改造升级。宁波轻量化3D打印材料3D打印应用无处不在。
中国是世界上比较大消费品市场,有着巨大的人口基数。因此塑料制品在家电、电子电器、以及生活日用品领域,都有着巨大的消耗体量。金属3D打印制造的带有异形水路的注塑模具,能极大的减少冷却时间,缩短注塑周期。通过提升注塑产品品质,有效的提升注塑机产能,降低单个塑料产品的生产成本。利用金属3D打印技术生产的模具,能很大程度上对传统模具生产进行优化,对提升企业竞争力有举足轻重的作用,对于大批量或者特大量的塑料产品生产有着重要的意义。
激光选区熔融方式的金属3D打印成型,理论上来说,高功率激光器能瞬间产生足够高的温度融化高熔点金属,但是在打印过程中,受到诸多其他因素影响,会严重影响材料成型,比如以常规民用领域较多的钢来说,钢的SLM成形研究很多经过长期实践得出,钢中Co2含量决定激光成形性能的一个关键因素。通常,过高的Co2含量将对激光成形性产生不利,随Co2含量升高,熔体表面Co2元素层的厚度亦会增加。这与氧化层的不利影响类似,也会降低润湿性,导致熔体铺展性降低,并引起球化效应。此外,在晶界上形成的复杂碳化物会增大钢材料激光成形件的脆性。因此,通常对钢材料SLM成形,需提高激光能量密度及SLM成形温度,可促进碳化物的溶解,也可使合金元素均匀化。所以金属3D打印的发展除了受到应用端成本影响外,适合于3D打印成型的新材料的开发也是一个非常重要的课题。金属3D打印激光选区熔融技术的应用市场受材料的限制。
提到金属3D打印,粉末是若不开的话题。原料粉体纯度影响着打印成品质量,因此需要采用纯度较高的金属粉体原料。粉体原料中主要含有的金属元素有Fe、Ti、Ni、Al、Cu、Co、Cr以及贵金属Ag、Au等。在金属3D打印制品成型过程中,粉体中若存在的杂质与基体发生反应,则会改变基体性质,影响打印件品质。杂质也会使粉体熔化不均,易造成制件的内部缺陷。当粉体含氧量较高时,金属粉体不但易氧化形成氧化膜,还会导致球化现象,影响制件的致密度及品质。尤其是在航空航天等特殊应用领域,客户对此指标的要求更为严格。因此,需要严格控制原料粉体的纯净度以保证制品的品质。粉末床激光熔融金属3D打印未来的发展进步方向。浙江牙冠金属3D打印未来
食品加工领域如何利用3D打印技术。广州模具3D打印机介绍
钛是20世纪50年代发展起来的一种重要的结构金属,纯钛是银白色的金属,化学性质比较活泼,具有许多优良性能。钛合金是以钛为基础加入其他元素构成的合金。钛合金具有强度高、耐蚀性好、耐热性高等特点。在金属3D打印中,钛被广泛应用于制作飞机发动机压气机部件,以及火箭、导弹和飞机的各种结构件。钛合金的密度为钢的60%,纯钛的强度接近普通钢的强度,一些较强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,可制造出单位强度高、刚性好、质量轻的零部件。钛合金的使用温度较高,可在450℃~500℃的温度下长期工作。钛合金能够在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢,对点蚀、酸蚀、应力腐蚀的抵抗力特别强。钛合金在低温下仍能保持其力学性能。比如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。广州模具3D打印机介绍