随着技术的发展,现代陀螺仪主要分为三类:光学陀螺仪、振动陀螺仪和MEMS陀螺仪。光学陀螺仪又可分为激光陀螺仪和光纤陀螺仪,它们都基于Sagnac效应工作,没有活动部件,具有寿命长、可靠性高、动态范围大等明显优势。振动陀螺仪利用科里奥利力效应测量角速度,结构相对简单,成本较低。MEMS陀螺仪则采用微机电系统技术,体积小、重量轻、功耗低,但精度通常不如光学陀螺仪。在各类陀螺仪中,光纤陀螺仪因其优异的性能和可靠性,已成为当今中高精度惯性导航系统的主流选择。虚拟现实头盔内置陀螺仪,追踪头部转动提升沉浸感。车载航姿仪生产厂家

陀螺仪飞轮会绕着输出轴转动或者不让该轴的转动,这取决于输出万向节的装配方式是自由的还是固定的。姿态基准陀螺仪就是一种自由输出万向节设备,可以用于感测或测量航天器或飞机的俯仰、滚转和偏航的姿态角。转子的重心可以在一个固定的位置。这样转子绕一个轴旋转的同时,还能够绕另外两个轴摆动。而且可以围绕这个固定点在任何方向自由转动(除了转子旋转引起的固有阻力以外)。一些陀螺仪用机械当量代替一个或多个元件。例如,旋转转子可以悬浮在流体中,而不是安装在万向节中。车载航姿仪生产厂家陀螺仪帮助天文望远镜稳定追踪天体运行轨迹。

我们以一个单轴偏航陀螺仪为例,探讨较简单的工作原理(图1)。两个正在运动的质点向相反方向做连续运动,如蓝色箭头所示。只要从外部施加一个角速率,就会产生一个与质点运动方向垂直的科里奥利力,如图中黄色箭头所示。产生的科里奥利力使感应质点发生位移,位移大小与所施加的角速率大小成正比。因为传感器感应部分的运动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专门使用电路可以检测的电参数。
艾默优ARHS系列陀螺仪的应用场景:车载导航领域:随着智能交通的发展,车载导航系统对高精度惯性测量设备的需求日益增长。ARHS系列陀螺仪应用于车载导航中,能够与全球定位系统(GPS)等其他导航技术相结合,为车辆提供更精确的定位和导航服务。在城市复杂的道路环境中,当车辆进入隧道、高楼林立的街区等GPS信号较弱或丢失的区域时,ARHS系列陀螺仪可以通过测量车辆的行驶方向和姿态变化,推算出车辆的行驶轨迹,实现连续、准确的导航。机械陀螺仪逐渐被MEMS陀螺仪取代,体积更小功耗更低。

下面重点说说。陀螺仪可以帮助手机实现很多增强现实的功能。增强现实是近期才冒出的概念,和虚拟现实一样,是计算机的一种应用。大意是可以通过手机或者电脑的处理能力,让人们对现实中的一些物体有跟深入的了解。如果大家不理解,举个例子,前面有一个大楼,用手机摄像头对准它,马上就可以在屏幕上得到这座大楼的相关参数,比如楼的高度,宽度,海拔,如果连接到数据库,甚至可以得到这座大厦的物主、建设时间、现在的用途、可容纳的人数等等。智能手机内置陀螺仪,实现屏幕自动旋转与游戏体感操作。车载航姿仪生产厂家
陀螺仪能辅助自行车导航,增强骑行定位的可靠性。车载航姿仪生产厂家
航向姿态系统是一种测量、显示飞机航向角、俯仰角和滚转角的飞行仪表。它由全姿态陀螺仪、磁航向传感器或天文罗盘和全姿态指示器组成。全姿态陀螺仪主要由航向陀螺和垂直陀螺(一种陀螺地平仪)组成。这两个陀螺仪均装在随动环内,所以在飞机机动飞行时既能使航向陀螺的外环轴始终保持在地垂线方向上,又能使垂直陀螺的转子轴和外环轴始终保持正交,以保证全姿态陀螺仪提供正确的航向、俯仰、倾侧姿态信息。按驱动陀螺轮运转的分类方式有:电动和气动。按姿态角测量分类方式有:摩擦式电位器(通过测量模拟电压的大小来计算出姿态角)和非接触式容栅传感器 ;对于角速度传感器,很多人可能会比较陌生,不过,如果提到它的另一个名字——陀螺仪,相信有不少人知道。车载航姿仪生产厂家