基于m-PBI和ZIF-11的MMM在纳米级和微米级颗粒的范围内都得到了发展,填充量高达55wt%。据报道,H2渗透率的增加是由于穿透气体分子的扩散速度加快,而ZIF和聚合物溶液中CO2吸附量的减少则是MMM选择性提高的原因。表3总结了m-PBIMMM的H2/CO2性能。虽然对PBI主链进行化学处理可大幅提高其自由体积分数(FFV),从而提高H2渗透率,但这往往是以丧失H2/CO2选择性为代价的。未来的研究应探索使用同时具有大分子和刚性官能团的单体进行无规共聚,以生产高渗透性和刚性的PBI聚合物,从而克服渗透性和选择性之间的权衡。在体育用品制造中,PBI 塑料用于制造高级球拍等,提升产品性能。上海PBI高耐磨轴套价位

突出的高分子耐久性满足您对高性能热塑性材料的需求是专为注塑和挤出而设计的PBI复合材料。这些产品将PBI突出的机械性能和耐热性与聚芳醚酮(PEEK或PEKK)的熔融加工能力相结合,可提供经济高效的高性能。这些产品以颗粒形式提供。Celazole®PBI(聚苯并咪唑)是一种独特且高度稳定的杂环聚合物。PBI聚合物具有高热稳定性的特点;具有强度高、普遍的耐化学性以及与包括聚芳醚酮系列在内的某些其他聚合物的独特兼容性。耐磨性:比聚酰胺酰亚胺高4倍强度高:先进聚合物涂层具有耐热性和耐化学性PBIPerformanceProducts的标准PBI涂层溶液适用于薄膜铸造、浸涂、喷涂和浸渍。PBI医疗接头机加工PBI塑料的初始开发是为了满足NASA的耐火纤维需求。

TPU+PBI:材料新组合:探索TPU热熔粘合剂1170LEXP的奥秘,这种材料在国内得到了普遍应用。它的独特性质使得它在各种工业和商业应用中大放异彩。PBI,即聚丁烯类聚合物,是一种在齐格勒-纳塔催化剂作用下,由-丁烯制得的聚合物。它的相对分子质量分布范围普遍,从770000到几百万不等。PBI的链结构主要是全同立构的,这使得它具有独特的物理和化学性质。用PBI制成的零件可用作绝缘体、插座以及密封垫等。它的这些特性使其在电子、电气、航空航天等领域有着普遍的应用前景。
PBI对钢的滑动磨损:PAI系统在所有后固化温度下都表现出明显高于PBI系统的比磨损率wS。PAI_180的磨损率较高,而PBI_280的磨损率较低,为2.18x10^(-07)mm³/Nm。与之前的测试(网格切割、划痕)类似,随着较终固化温度的提高,PBI涂层的耐磨性也得到了改善。在所有情况下,PBI涂层的摩擦系数也略优于PAI涂层。磨料磨损:正如预期的那样,磨料颗粒尺寸越小,特定磨料磨损率越低。在这里,无论较终固化温度如何,PBI涂层和PAI涂层之间都没有明显差异。PBI塑料的熔点较高,加工制造具有挑战性。

目前,化石燃料是通过蒸汽转化生产H2的主要来源(图1)。但这一工艺的缺点是会产生大量温室气体,包括副产品二氧化碳。根据原料的质量,每生产一吨H2会产生9-12吨CO2。从二氧化碳中分离出H2在热力学上是非自发的,没有外部能源的输入是不可能实现的。因此,开发高效的H2和CO2分离技术对于生产高纯度和廉价的H2至关重要。通常,二氧化碳是通过低温蒸馏或变压吸附工艺分离出来的。在低温蒸馏过程中,气体被冷却到非常低的温度,从而使二氧化碳液化并分离出来。另一方面,变压吸附法的工作原理是:在高压下,气体倾向于吸附在固体上,当压力降低时,气体被解吸。由于H2的吸附率不同于CO2,因此H2可以被净化。虽然这些方法通常能得到高纯度的H2,但它们需要消耗大量能源(需要非常高或非常低的温度),而且涉及复杂的操作和维护。PBI 塑料具有出色的耐高温性能,能在极高温度下保持稳定结构,应用于航空航天领域。上海PBI精密注塑加工
PBI塑料长期耐高温工作温度可达310度。上海PBI高耐磨轴套价位
PBI涂层附着力和耐刮擦性:纯PBI涂层的附着力受较终固化温度的影响很大。随着温度的升高,铝基板的强度明显增加。系统PBI_280的网格切割强度(GK=0)达到了较佳值(图4,左)。“临界载荷”(涂层开始破裂并从基材上剥离的载荷)的结果显示,纯PBI涂层和之前测试的PAI涂层之间存在明显差异(图4,右)。测量到PBI_280涂层的较高临界载荷(约82N),与较高的耐刮擦性相对应。PBI_180和PBI_215之间的差异很小,由于测试结果分散,可以忽略不计。其他作者也观察到块状PBI具有非常高的耐刮擦性。上海PBI高耐磨轴套价位