无论是还原论还是功能主义都取得了部分成功,是一部分成功。越靠近听觉系统的底层,还原论越能够清晰地描述子系统的工作原理。但是,这个思路在系统就陷入了复杂性的迷雾。靠近顶层,从功能主义角度出发,基于深度学习的分类器在声学事件感知方面表现良好。深度学习迅速获得成功,在一定程度上掩盖了早期模型底层的局限——至少在发展初期,其使用的麦克风和声学特征是针对通信产品设计的。这类前端针对语声做了优化,并未考虑声学事件感知。例如,声学场景分析的早期工作使用梅尔倒频谱系数(MFCC)作为特征,损失了大量时域信息,同时在频域上也不够精细。以上种种都说明,声学事件和场景分析与通信系统具有本质不同,也不是深度学习的一个简单应用场景,对前端和后端都提出了新的要求。这些特性使得“机器听觉”成为一个学科。超声波在医学成像、清洗和检测中有广泛应用。开州私人影院声学处理方案

房间的扩散特性好,则声音的衰减平滑,室内各处声音感觉均匀。任何凸面都有扩散声波的能力,包括斜面、曲面以及凸弧面,当需要扩散声波频率但受制于凸面大小时,可采用扩散板进行处理。听音房间的建筑声学特性各不相同,不同物体对声音的反射和吸收也各不相同,所以为改善听音环境而进行声学处理,房间内的吸音和扩散处理是一个十分重要的声学处理环节。在视听室中安装散材料并且进行混响测试的时候,必须确保房间中没有具有特殊硬反射的物料存在,如玻璃、金属板等。由于声波在室内各反射面上连续反射,并且不断改变其传播方向,这种能使室内任一位置上的声波可以沿所有方向传播的声场称为扩散声场。严格意义上的扩散声场必须满足以下三个条件:1、室内的声能密度均匀,即声能密度处处相等。2、声能在室内各个方向传递的几率相等。3、从室内各个方向到达任一点的声波,其相位是无规律的。在这样的声场中,声波无论在空间位置还是传播方向上都不会一成不变地汇集在一起,而是随着传播过程的进行逐渐扩展,并分散开来,直至充满全部空间并遍及所有方向。南岸多功能体育馆声学处理方案经宁之源体育馆噪声控制方案设计施工后,体育馆混响、音质、声场分布均达到设计要求。

液体介质液体也是声学传播的一种介质。在液体中,声波的传播速度比在空气中快但比固体中慢。这是因为液体分子之间的间距适中且分子间的相互作用较强,使得声波在液体中传播时能够保持一定的速度和稳定性。例如,当我们在水中游泳时,可以听到来自水下的声音(如潜水员的呼吸声、鱼类的游动声等)。这些声音通过水这种液体介质传播到我们的耳朵中。气体介质气体是声学传播常见的介质之一。在空气中,声波通过空气分子的振动和碰撞进行传播。空气分子之间的间距较大且相互作用较弱,因此声波在空气中的传播速度相对较慢且容易受到干扰(如风速、温度、湿度等因素的影响)。然而,空气作为自然界中普遍存在的介质之一,使得声波能够在广阔的空间中自由传播并影响我们的日常生活。例如,当我们说话时发出的声音就是通过空气传播到他人的耳朵中的;同时我们也可以听到来自远处的声音(如鸟鸣声、车流声等)通过空气传播到我们的耳朵中。
如果一个房间内已经放置了家具、窗帘等家私物品,那么实际上这个房间已经拥有很好的声学特性,然而在许多情况下,我们所制作的视听室是一个毛坯房,设计师们只能看到一个空荡荡的房间,因此声学设计要尽量运用吸收和扩散这两个处理方式,而吸收和扩散拥有相辅相成的关系。不过,过度使用声学处理材料或使用过少都会影响整体系统的声音表现。另外,低频驻波是由于房间物理寸所产生的,所有的房间都有低频驻波问题,并不存在彻底的解决方法。除了对视听室内在进行处理外,改变房间的尺寸比例、选择合适的听音位置、很低音扬声器合理摆位、使用针对低频的声学处理方法和使用均衡器,都可以很好地对声学效果进行处理。而面对噪声问题,可以通过隔绝空气传播和隔绝结构传播来实施处理。隔绝空气传播的其中一个重要部分,就是使用特殊设计的隔声风管或使用超静音空调;在隔绝结构传播部分,可以使用特殊的墙体结构。声学在自然界中的传播依赖于介质,这些介质包括固体、液体和气体。

建筑声学:我之前详细介绍过建筑声学发展史,这里不做过多介绍。声学发展史之——建筑声学:主要研究动物间声音的产生和听觉。包括声音交流和动物行为和种类进化的关系,动物的听力原理和神经生理学,利用声音来监督动物种群,人为噪声对动物的影像等等。我在AI声学这篇文章里面也介绍了人工智能如何应用在声学声学发展史之——人工智能声学电声学:涉及到耳机、麦克风、音响等声音系统的声音重建、录制和设计。电声随着手机等便携式电子设备的兴起而迅猛发展,HiFi爱好者对其也有很大推动。大部分相关的电子企业都有电声方面的研究。环境声学:操控环境中交通、飞机、工业设备等产生的振动和噪声。声学从业者需要能够定量检测噪声,并且提出解决方案。很多声学咨询都可以提供相关服务,国内外在环境声学领域都有很多人在做。由于和人息息相关,环境噪声对人的影响越来越大,也因此更受重视。声景是环境声学衍生出来的新宠,不止关注与噪声,也关注如何积极地利用声音,为人服务。更多声景的知识可以参考康健老师的书。声学是研究声音和各种介质中传播的科学,它涵盖了声波的产生、传播和接收,以及声音对物体和环境的影响。南岸多功能体育馆声学处理方案
液体也是声学传播的一种介质。在液体中,声波的传播速度比在空气中快但比固体中慢。开州私人影院声学处理方案
对于声音的一种传播,早在古希腊时期,亚里士多德就提出声音的传播过程实际是空气的运动,而对于声音的具体传播速度则经过一系列的实验测试才得到正确的结果。1708年,英国学者德罕姆站在一座教堂的顶端,注视着19公里外正在发射的炮弹,通过计算炮弹发出闪光后与听见炮的轰隆声之间的时间,经过多次测量后取平均值,得到空气中的声速为343m/s。1827年,瑞士物理学家科拉顿用相似的方法在日内瓦湖上测出了水下的声速为1435m/s。1687年牛顿在《自然哲学的数学原理》中推导出声速的定量计算公式,但由于牛顿将声波在空气中的传播考虑为等温过程而使得计算与测量结果不一致,后在1816年由拉普拉斯进一步修正为绝热过程后获得了正确的结果。耳朵,作为早期实验探究中接收声音的主要工具,也引发了学者们的研究兴趣。1830年,法国物理学家用风机和旋转齿轮进行了一系列实验,测试出了人耳的听觉范围为每秒8次振动至每秒24000次振动。物理学家亥姆霍兹则给出了人耳机制的详细阐述,即所谓的共鸣理论,他认为,耳蜗基膜的各构成部件对传入耳朵的一定频率产生共鸣。亥姆霍兹对这种机械共鸣现象产生了巨大的兴趣,并且发明了一种共鸣器,即亥姆霍兹共鸣器。开州私人影院声学处理方案
音乐制作中的声学技术应用1.录音技术的革新录音技术的发展是音乐制作中的变化之一。从早期的圆筒录音机到...
【详情】一个真正好的私人影院首当其冲的应该是设计,视听器材只是实现家庭影院设计必备的工具而已。铭峰影音根据用...
【详情】在拥有个性时尚而大气的影音室,在家就能享受高质量的视听盛宴,炫酷的体验,淋漓的享受,是高质量品质生活...
【详情】忌讳的是正方形,至于为什么我们后面讲到)。1.如何控制驻波(高、中、低频驻波),抑止反射声:可能有些...
【详情】民族音乐文化的传承与创新在声乐教育体系中,声学技术还促进了民族音乐文化的传承与创新。通过对传统乐器的...
【详情】天花板的处置一般来说,天花板比较好也是吸音与涣散兼具,这样动静才会比较好。假设只需涣散,则从天花板来...
【详情】液体介质液体也是声学传播的一种介质。在液体中,声波的传播速度比在空气中快但比固体中慢。这是因为液体分...
【详情】液体介质液体也是声学传播的一种介质。在液体中,声波的传播速度比在空气中快但比固体中慢。这是因为液体分...
【详情】黑色为主的影音室,灯带带来十足的线条感,在气派而奢华的氛围中,各个元素互相呼应,时尚富有浓郁现代格调...
【详情】面光灯嵌入吊顶里,顶部四周采用聚酯纤维吸音板,形成美观造型的吊顶。2、吸音墙:墙体和墙面的施工质量在...
【详情】对于声音的一种传播,早在古希腊时期,亚里士多德就提出声音的传播过程实际是空气的运动,而对于声音的具体...
【详情】