原理,激光雷达( Light Detection and Ranging,LIDAR)是激光检测和测距系统的简称,通过对外发射激光脉冲来进行物体检测和测距。激光雷达采用飞行时间(Time of Flight,TOF)测距,发射器先发送一束激光,遇到障碍物后反射回来,由接收器接收,然后通过计算激光发送和接收的时间差,得到目标和自己的相对距离。如果采用多束激光并且360度旋转扫描,就可以得到整个环境的三维信息。激光雷达扫描出来的是一系列的点,因此激光雷达扫描出来的结果也叫“激光点云”。10cm 小盲区配合小巧身形,览沃 Mid - 360 为机器人提供无死角视野。微波激光雷达制造

不同车载传感器的比较,目前,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告(2019)》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的主要传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精确性等方面,相比毫米波雷达具有一定的优势。Hap激光雷达厂家精选激光雷达在航空测量中提供了高精度的地理数据。

测远能力: 一般指激光雷达对于10%低反射率目标物的较远探测距离。较近测量距离:激光雷达能够输出可靠探测数据的较近距离。测距盲区:从激光雷达外罩到较近测量距离之间的范围,这段距离内激光雷达无法获取有效的测量信号,无法对目标物信息进行反馈。角度盲区:激光雷达视场角范围没有覆盖的区域,系统无法获取这些区域内的目标物信息。角度分辨率:激光雷达相邻两个探测点之间的角度间隔,分为水平角度分辨率与垂直角度分辨率。相邻探测点之间角度间隔越小,对目标物的细节分辨能力越强。
当三维点较为稠密的时候,可以像视觉一样提取特征点和其周围的描述子,主要通过选择几何属性(如法线和曲率)比较有区分度的点,在计算其局部邻域的几何属性的统计得到关键点的描述子,而当处理目前市面上的激光雷达得到的单帧点云数据时,由于点云较为稀疏,主要依靠每个激光器在扫描时得到的环线根据曲率得到特征点。而有了两帧点云的数据根据配准得到了相对位姿变换关系后,我们便可以利用激光雷达传感器获得的数据来估计载体物体的位姿随时间的变化而改变的关系。比如我们可以利用当前帧和上一帧数据进行匹配,或者当前帧和累计堆叠出来的子地图进行匹配,得到位姿变换关系,从而实现里程计的作用。激光雷达在机器人避障中发挥了关键作用。

测距准度:激光雷达探测得到距离数据与真值之间的差距,准度越高表示测量结果与真实数据符合程度越高。点频:激光雷达每秒完成探测并获取的探测点的数目。抗干扰:激光雷达对工作同一环境下、采用相同激光波段的其他激光雷达的干扰信号的抵抗能力,抗干扰能力越强说明在多台激光雷达共同工作的条件下产生的噪点率越低功耗:激光雷达系统工作状态下所消耗的电功率。激光雷达线数:一般指激光雷达垂直方向上的测量线的数量,对于一定的角度范围,线数越多表示角度分辨率越高,对目标物的细节分辨能力越强。工业生产里激光雷达检测产品缺陷,高效保证产品质量。湖北航道激光雷达
建筑行业内激光雷达快速扫描建模,辅助设计与施工。微波激光雷达制造
工作原理,,与MEMS微振镜平动和扭转的形式不同,转镜是反射镜面围绕圆心不断旋转,从而实现激光的扫描。在转镜方案中,也存在一面扫描镜(一维转镜)和一纵一横两面扫描镜(二维转镜)两种技术路线。一维转镜线束与激光发生器数量一致,而二维转镜可以实现等效更多的线束,在集成难度和成本控制上存在优势。简而言之,使用转镜折射光线实现激光在FOV区域内的覆盖,通常与线光源配合使用,形成FOV面的覆盖,也可以与振镜组合使用,配合点光源形成FOV面的覆盖。微波激光雷达制造