时域分析是生产下线NVH测试数据分析的重要方法之一,它直接在时间轴上对采集到的噪声和振动数据进行分析。通过时域分析,可以直观地观察到信号随时间的变化情况。例如,在发动机启动和加速过程中,通过时域分析能清晰看到噪声和振动幅值如何随时间上升,以及是否存在异常的峰值或波动。在车辆行驶过程中,时域分析还能捕捉到因路面不平或部件碰撞产生的瞬间冲击信号,这些信号往往反映了车辆的动态响应特性。工程师可从时域波形中获取关键参数,如峰值、有效值等。峰值反映了信号在某一时刻的比较大幅值,可用于评估部件所承受的比较大应力;有效值则综合考虑了信号在一段时间内的能量分布,常用于衡量噪声和振动的总体强度。通过对时域数据的分析,能初步判断车辆NVH性能是否存在问题,并为进一步的频域分析和其他分析方法提供基础。当车辆通过生产下线 NVH 测试,意味着它在噪声、振动控制方面达到了既定标准,能为用户带来驾乘体验。宁波电机和动力总成生产下线NVH测试应用

生产下线NVH测试技术包括:
工况模拟技术:为了真实地评估产品的 NVH 性能,需要模拟产品的实际工作工况。在汽车下线 NVH 测试中,通过底盘测功机模拟车辆在不同路面(如平坦公路、颠簸路面)和不同行驶速度下的行驶状态。对于机械产品,采用电机等驱动设备模拟其正常的工作负载和转速。例如,在测试洗衣机的 NVH 性能时,通过加载不同重量的衣物,模拟不同的洗涤工况,来测量其在实际使用中的噪声和振动情况。传递路径分析(TPA)技术:用于确定振动和噪声从激励源(如发动机)传递到响应点(如车内乘客耳旁)的路径。通过 TPA 技术,可以分析每个传递路径的贡献量,从而有针对性地采取减振降噪措施。例如,在汽车 NVH 分析中,确定发动机振动通过悬架系统、车身结构传递到车内的路径,然后可以对关键的传递路径进行优化,如采用隔振衬套、阻尼材料等来减少振动和噪声的传递。 南京总成生产下线NVH测试仪当生产线上的新车缓缓驶下,一场针对其声学品质的 EOL NVH 测试马上开启,用专业设备捕捉细微瑕疵。

生产下线NVH测试环境的搭建至关重要,它直接影响测试结果的准确性与可靠性。理想的测试环境应尽可能模拟车辆实际行驶工况。首先,场地选择要远离大型工厂、交通主干道等噪声源,以减少外界干扰。测试场地的地面需平整且具有良好的吸声性能,避免因地面反射导致噪声测量误差。对于室内测试环境,需配备专业的吸声材料,打造低噪声本底环境。同时,环境温度、湿度和气压也需严格控制,因为这些因素会对材料特性及声音传播产生影响。此外,为模拟车辆行驶中的不同工况,需设置不同的测试跑道,如平坦路面、粗糙路面、减速带等。在测试区域还应合理布置传感器,确保能***准确采集车辆在各种工况下的噪声、振动数据。只有搭建科学合理的测试环境,才能为后续的NVH测试提供可靠基础。
模态分析是生产下线NVH测试技术中的重要环节,它用于研究车辆结构的固有振动特性。车辆结构在受到外界激励时,会以特定的固有频率和振动模态进行振动。模态分析通过对车辆进行激励,并测量其响应,从而获取结构的模态参数,包括固有频率、模态振型和模态阻尼等。在实际测试中,常采用锤击法或激振器激励法对车辆部件或整车进行激励。通过模态分析,工程师可以了解车辆结构在不同频率下的振动形态。例如,发现车身某个部位在某一频率下出现较大的振动变形,这可能导致噪声辐射增加或结构疲劳问题。基于模态分析结果,可对车辆结构进行优化设计,如调整部件的刚度、质量分布,或增加加强筋等,改变结构的固有频率,避免与外界激励频率产生共振,从而降低噪声和振动,提高车辆的NVH性能及结构可靠性。熟练运用生产下线 NVH 测试技术,能够在产品下线环节及时发现潜在的噪声和振动问题,以便迅速优化改进。

从测试流程来看,下线 NVH 测试遵循严格的规范。车辆首先进行静态 NVH 检测,此时全车处于通电但静止状态,测试人员检查车内电子设备如空调风机、座椅调节电机等工作时的噪音水平,确保基础的静谧性。接着动态测试登场,从低速缓行到高速急加速,多工况覆盖。以高速急加速为例,强大的动力输出可能引发传动系统的扭转振动,通过安装在关键部位的加速度传感器,实时传输数据至分析系统,工程师依据频谱图判断振动频率是否超标,若超标则针对性改进传动部件的动平衡,保障车辆在各种工况下平稳安静。通过生产下线 NVH 测试,能识别出车辆在行驶过程中因零部件共振产生的异常响动,优化设计提升整车性能。常州减速机生产下线NVH测试异音
汽车生产企业广泛应用生产下线 NVH 测试技术,对每一辆下线汽车进行严格测试,提升整车的静谧性和稳定性。宁波电机和动力总成生产下线NVH测试应用
生产下线NVH测试结果是提升车辆品质的关键依据。通过对测试数据的分析,若发现车辆存在噪声过大或振动异常问题,可针对性地进行改进。对于噪声问题,若确定是发动机噪声,可优化发动机燃烧过程,改善进排气系统,或增加发动机舱的隔音材料;若是风噪问题,则可调整车身外形设计,优化密封结构。对于振动问题,若模态分析显示某部件固有频率与激励频率接近导致共振,可通过改变部件结构、调整质量分布来改变固有频率。同时,测试结果还可用于对供应商零部件的质量评估。若因某零部件导致车辆NVH性能不达标,可要求供应商改进产品设计或提高制造精度。持续跟踪测试结果,将有助于优化车辆设计和生产工艺,不断提升车辆的NVH性能,满足消费者对车辆舒适性日益增长的需求,增强产品市场竞争力。宁波电机和动力总成生产下线NVH测试应用