激光雷达基本参数
  • 品牌
  • 览沃/宸曜
  • 型号
  • 齐全
激光雷达企业商机

半固态-棱镜式激光雷达,无人机厂商大疆孵化览沃科技(Livox)入局激光雷达,便是采用的棱镜式扫描方案,大疆利用其在无人机领域积累的电机精确调控技术及自动化产线,有信心克服棱镜轴承或衬套寿命的难题,也为其激光雷达技术构筑护城河。工作原理,棱镜式激光雷达也称为双楔形棱镜式激光雷达,内部包括两个楔形棱镜,激光在通过头一个楔形棱镜后发生一次偏转,通过第二个楔形棱镜后再一次发生偏转。控制两面棱镜的相对转速便可以控制激光束的扫描形态。与前面提到的扫描形式不同,棱镜激光雷达累积的扫描图案形状状若菊花,而并非一行一列的点云状态。这样的好处是只要相对速度控制得当,在同一位置长时间扫描几乎可以覆盖整个区域。自动驾驶巴士借助激光雷达感知周边,安全接送乘客。固态激光雷达厂商

固态激光雷达厂商,激光雷达

点频,即周期采集点数,因为激光雷达在旋转扫描,因此水平方向上扫描的点数和激光雷达的扫描频率有一定的关系,扫描越快则点数会相对较少,扫描慢则点数相对较多。一般这个参数也被称为水平分辨率,比如激光雷达的水平分辨率为 0.2°,那么扫描的点数为 360°/0.2°=1800,也就是说水平方向会扫描 1800 次。那么激光雷达旋转一周,即一个扫描周期内扫描的点数为 1800*64=115200。比如禾赛 64 线激光雷达,扫描频率为 10Hz 的时候水平角分辨率为 0.2°,在扫描频率为 20Hz 的时候角分辨率为 0.4°(扫描快了,分辨率变低了)。输出的点数和计算的也相符合 1152000 pts/s。浙江高精度激光雷达价格抗室外强光达 70 米 @80% 反射率,览沃 Mid - 360 适应多种光照条件。

固态激光雷达厂商,激光雷达

激光雷达在ADAS应用:海内外持续发展,2025年全球市场规模有望达6.2亿美元。2020年10月,百度在北京全方面开放无人驾驶出租车服务,在13个城市部署总数测试车辆,并且与一汽红旗合作实现了中国首条L4级自动驾驶乘用车生产线建设,具备批量生产能力。根据Forst&Sullivan研究估计,2026年ADAS领域使用激光雷达产业规模有望达12.9亿美元。其中,中国、美国、其他地区分别为6.7/3.5/2.7亿美元。2030年ADAS领域使用激光雷达产业规模有望达64.9亿美元,其中中国、美国、其他地区分别为32.5/13.0/19.5亿美元。

探测距离,激光雷达标称的较远探测距离一般为150-200m,实际上距离过远的时候,采样的点数会明显变少,测量距离和激光雷达的分辨率有着很大的关系。以激光雷达的垂直分辨率为0.4°较远探测距离为200m举例,在经过200m后激光光束2个点之间的距离为,也就是说只能检测到高于1.4m的障碍物。如下图10所示。如果要分辨具体的障碍物类型,那么需要采样点的数量更多,因此激光雷达有效的探测距离可能只有60-70m。增加激光雷达的探测距离有2种方法,一是增加物体的反射率,二是增加激光的功率。物体的反射率是固定的,无法改变,那么就只能增加激光的功率了。但是增加激光的功率会损伤人眼,只能想办法增加激光的波长,以避开人眼可见光的范围,这样可以适当增大激光的功率。探测距离是制约激光雷达的另一个障碍,汽车在高速行驶的过程中越早发现障碍物,就越能预留越多的反应时间,从而避免交通事故。安防监控运用激光雷达实时监测,及时发现入侵异常情况。

固态激光雷达厂商,激光雷达

激光雷达的FOV,FOV指激光雷达能够探测到的视场范围,可以从垂直和水平两个维度以角度来衡量范围大小,下图比较形象的展示了激光雷达FOV范围,之所以要提到FOV是因为后面不同的技术路线基本都是为了能够实现对FOV区域内探测。垂直FOV:常见的车载激光雷达通常在25°,形状呈扇形;水平FOV:常见的机械式激光雷达可以达到360°范围,通常布置于车顶;常见的车载半固态激光雷达通常可以达到120°范围,形状呈扇形,可布置于车身或车顶。主动抗串扰功能,使览沃 Mid - 360 在多雷达干扰下仍能正常运作。深圳激光雷达厂家供应

混合固态技术赋能,Mid - 360 实现 360° 全向超大视场角感知。固态激光雷达厂商

MEMS阵镜激光雷达,MEMS振镜是一种硅基半导体元器件,属于固态电子元件;它是在硅基芯片上集成了体积十分精巧的微振镜,其主要结构是尺寸很小的悬臂梁——反射镜悬浮在前后左右各一对扭杆之间以一定谐波频率振荡,由旋转的微振镜来反射激光器的光线,从而实现扫描。硅基MEMS微振镜可控性好,可实现快速扫描,其等效线束能高达一至两百线,因此,要同样的点云密度时,硅基MEMSLidar的激光发射器数量比机械式旋转Lidar少很多,体积小很多,系统可靠性高很多。固态激光雷达厂商

与激光雷达相关的**
信息来源于互联网 本站不为信息真实性负责