根据滚动轴承结构及滚动体不同,轴承可分为 :球轴承和滚子轴承两大类。球轴承按滚道面形状可分为 : 深沟球轴承及角接触球轴承 ;滚子轴承按滚子形状可分为: 圆柱滚子轴承、滚针轴承、圆锥滚子轴承、调心滚子轴承。从功能方面来看,按承受载荷方向不同可分为 : 主要承受径向载荷的向心轴承和承受轴向载荷的推力轴承。此外,按滚动体列数可分为单列、双列、四列轴承等 ;还可以按照内外圈是否可分离,分为可分离型轴承和不可分离型轴承。另外还有机床用精密滚动轴承、特殊环境用轴承等特殊用途的轴承和直线运动球轴承、直线运动滚子轴承、直线平面导轨支承等直线运动轴承。所谓轴承内部游隙,是指轴承未安装到轴或轴承座前的状态。浙江4T-30313NTN轴承样本
英制圆锥滚子轴承的代号组成符合美国轴承制造商协会(ABMA)的规定,内圈子单元(CONE)与外圈(CUP)有着不同的轴承代号。其组成如表5.3所列,代号、补充编号说明如下所示。该代号按轻载荷到重载荷的顺序分为9 种。EL, LL, L, LM, M, HM, H, HH, EH。这些代号前加 J 时,**公制尺寸的轴承。外圈的补充编号为 10 ~ 19。内圈的补充编号为 30 ~ 49。补充编号超出上述范围时为20 ~ 29,外圈从 20 起 往 后,内圈从 29 起往前。过 去 3XX 中 没 有 的 尺寸系 列,符 合 JIS B1512-3 标准的规定。本尺寸系列符合 ISO 355的规定,由角度、直径及宽度的系列代号组成。内圈子单元与外圈在国际上具有互换性。该轴承代号的组成列于表 5.4,浙江UCP312D1NTN轴承经销通常以工作游隙值稍正为目标选择轴承初始内部游隙。
滚动轴承的游隙在正常旋转时的状态不能一概而论。若要只让轴承承受载荷并彻底旋转,比较好有一定的游隙,但游隙过大则会导致寿命降低和振动。相反,若要延长寿命和防止轴晃动,比较好为负游隙(预紧),但预紧过大则会出现摩擦增加或咬粘等问题。标准的运转状态,可以认为是游隙为零时的运转状态。1)游隙与滚动体载荷 W① 轴承游隙>0的场合[图 3.11],载荷分布 ε < 0.5,相比轴承游隙=0的场合[图3.10],比较大滚动体载荷变大。② 图 3.13 表示了轴承游隙略为负时,是寿命**长的理想状态。
如 3.2“基本额定寿命和基本额定动载荷”所述,即使一组相同的轴承运转于同样工况下,其寿命也会差异很大。该差异被普遍认为高度符合“威布尔分布”,寿命算式(3.1、3.2)和基本额定动载荷 C 的算式都是以“轴承寿命符合威布尔分布”为前提建立的基础理论。威布尔分布中体现差异的指标系数为威布尔斜率,在 ISO 和 JIS 计算寿命的基础理论中,球时间参考值列于表 3.5。决定轴承尺寸时,轴承疲劳寿命是十分重要的基准。除此之外,还应考虑轴及轴承座的强度及刚性。轴承的威布尔斜率为 10/9,滚子轴承的威布尔斜率为 9/8。非接触密封是利用轴和轴承座端盖之间的微小游隙的密封方法,几乎无摩擦,适宜于高速旋转。
由于轴和轴承座的精度、刚性不足导致内外圈之间产生倾斜的场合,会产生强制性的力矩外力。受到力矩载荷的场合,轴承寿命计算无法按照一般情况下使用的 L =(Cr / Pr)P,而是需要考虑不同轴承的内部设计与游隙等因素进行计算。这些因素导致寿命降低的比例会因内部游隙、载荷工况及内部设计形状而不同,因此需要在各自的工况下计算,无法给出一个统一的系数。关于深沟球轴承与圆柱滚子轴承,对其倾斜角(安装误差)与寿命的关系进行详细计算的结果如图 3.8 及图 3.9 所示。关于不同轴承类型的极限倾斜角与极限调心角的概况,请参阅第 14 节“轴及轴承座设计”中的表 14.6(A-135)。随着轴承温度的升高,润滑脂补充间隔时间缩短。UC206HTNTN轴承
。向轴承填充润滑脂时,填充量的基准为轴承空间容积的 30 % ~ 40 %。浙江4T-30313NTN轴承样本
)作用于交叉轴齿轮的载荷作用于交叉轴的直齿锥齿轮和弧齿锥齿轮的载荷如图 4.4 及图 4.5 所示,其计算式列于表4.3。其中,直齿锥齿轮螺旋角 β = 0,计算锥齿轮的载荷。表 4.3 所列计算式的符号及单位的说明如下:式中,Kt :齿轮切向载荷(切线力) NKs :齿轮径向载荷(分离力) NKa :与齿轮轴平行的载荷(轴向载荷) NH :传递动力 kWn :转速 min‒1Dpm:平均节圆直径 mmα :齿轮压力角度 °β :齿轮螺旋角度 °δ :齿轮节圆锥角度 °通常两根轴垂直相交,小齿轮和大齿轮载荷存在下列的关系。Ksp = Kag (4.7)Kap = Ksg (4.8)式中,Ksp,Ksg :小齿轮、大齿轮的分离力 NKap,Kag :小齿轮、大齿轮的轴向载荷 N浙江4T-30313NTN轴承样本