在相干多探头超声成像中的作用在相干多探头超声成像技术中,微泡造影剂被用于生成点状目标。通过向成像区域引入稀疏的微泡群体,然后采用类似于超声超分辨率成像的方法对其进行检测和定位。利用定位后的微泡,可以计算出比较好的波束形成参数,包括换能器位置和平均声速等,从而提高超声成像性能2。二、在超声调制激光回馈成像中的作用在超声调制光学成像技术基础上结合激光回馈技术提出的超声调制激光回馈技术中,超声微泡造影剂在透明溶液中可以增强超声调制激光回馈信号,并产生谐波调制。通过检测回馈基波和谐波信号增强量的方法可提高成像对比度;而在仿生物组织环境中,超声微泡造影剂可***衰减超声调制激光回馈信号,通过检测回馈基波和谐波信号衰减量的方法可提高成像对比度。纳米微泡比超声微泡具有更好的被动瞄准能力。制备超声微泡药物
相干多探头超声成像系统允许对来自系统多个探头的所有接收射频(RF)数据集进行相干组合,从而获得更大的有效孔径,提高超声成像性能。该方法依赖于检测成像区域内的多个孤立点状目标,这些目标处于构成系统的换能器的共同视场(FoV)中。研究提出使用微泡产生相干多探头方法所需的点状目标413。通过向感兴趣的成像区域引入稀疏的微泡群,然后使用类似于超声超分辨率超声成像的方法对其进行检测和定位。***,使用定位的微泡并按照相干多探头方法提出的方法计算比较好波束形成参数,包括换能器位置和平均声速。声学血管造影技术声学血管造影是一种超声对比度增强的超声成像技术,其能够实现三维高分辨率微血管可视化。该技术利用双频成像策略,以低频发送并以较高频率接收,以检测高频造影剂签名并将它们与组织背景分开15。具有18或20碳酰基链的全氟化碳芯或脂质壳的微泡产生比六氟化物芯或具有16碳酰基链的脂质壳的更高谐波信号。随着微泡直径从1到4μm增加,超高臂产生降低。综上所述,超声微泡造影剂在不同成像技术中的作用机制存在明显差异,这些差异主要取决于成像技术的原理和特点。在实际应用中,需要根据具体的成像需求选择合适的成像技术和超声微泡造影剂。 制备超声微泡药物声空化是在声压场作用下液体中蒸气泡的形成和坍缩。
超声微泡造影剂是一种在医学成像中具有重要作用的技术手段,其通常包含特定的药物成分,以实现更好的诊断和***效果。以下将详细介绍超声微泡造影剂中可能包含的药物。全氟化碳气体:对于造影剂超声成像,***的造影剂包括高度可压缩的充气微气泡。这些微米级的颗粒通常填充有低溶解度的全氟化碳气体36。全氟化碳气体具有良好的稳定性和可压缩性,能够在超声作用下产生强烈的回声信号,从而提高成像的清晰度和对比度。靶向配体:为了实现分子/靶向成像,微泡用靶向配体修饰,这些配体对疾病的血管生物标记物具有特定的亲和力,例如**新脉管系统或炎症区域,缺血再灌注损伤或局部缺血记忆36。一旦与靶标结合,就可以通过超声成像选择性地观察微泡,以描绘出疾病的位置。化疗药物:随着超声微泡造影剂携带的化疗药物微泡的不断研究和开发,超声微泡造影剂为给药途径提供了新的方向和发展前景8。例如,超声微泡造影剂可以携带特定的化疗药物,在超声作用下,微泡破裂释放药物,实现局部靶向***,有望成为一种安全、有效、无创的新型***手段。尿激酶:在体外和体内溶栓***中,尿激酶(urokinase,UK)可以与超声和微泡结合使用。研究表明。
超声造影剂,以充气微泡的形式,在灌注监测中越来越受欢迎;它们被用作分子显像剂。微泡是由生物相容性材料制成的,它们可以静脉注射,有些被批准用于临床使用。超声照射可以破坏微泡。这种破坏现象可应用于靶向给*和增强*物作用。超声场可以聚焦在目标**和***上;因此,可以提高***的选择性,减少不良的副作用。微泡增强超声能量在**中的沉积,并作为空化核,增加细胞内*物传递。在血管内施用微泡和质粒DNA后应用超声的身体区域观察到DNA传递和成功的**转染。在几个临床试验中,通过溶栓剂和微泡的共同作用,加速了超声区域的血凝块溶解。**令人兴奋的应用之一可能是基因***。基因***是***多种**的一种很有前景的工具,但目前的临床应用受到安全有效的局部基因递送到特定**或***系统的发展的阻碍。在表征遗传**和理解蛋白质转录方面已经取得了巨大的进步,但在将遗传物质传递到细胞中进行***方面进展相对较少。非**基因传递可以通过直接注射DNA来实现,但这种方法通常存在转染效率低和基因产物短暂表达的问题。**载体***提高转染的效力,因为特定的**机制已经专门进化到引入外源DNA进入哺乳动物细胞,但**蛋白引起免*靶宿主/**内的反应。**近。功率多普勒成像涉及一系列超声脉冲的传输和接收,其中脉冲之间的散射体运动用于检测血流。
Tartis等人报道了使用18F脂质标记微泡在注射后立即和数天内监测大鼠模型中非靶向微泡的生物分布。此外,使用超声辐射力和破坏性脉冲,可以选择性地破坏大鼠肾脏中的气泡,以便研究通过微泡破坏的超声波介导递送。尽管他们无法报告处理和未处理肾脏之间全身微pet图像数据的任何显着强度差异,但*躯干视野的90分钟采集以及离体研究都证实了声学处理肾脏的活性增加。Willmann等人使用VEGFR2靶向微泡扩展了18F标记的研究,使分子靶向微泡剂在小鼠体内的生物分布监测成为可能。DEI是一种基于x射线的发展模式,提供比传统x射线成像更好的软**对比,比计算机断层扫描辐射更小。DEI使用同步***产生的单色x射线束和晶体分析仪来检测通过**样品的光子的折射和衍射。晶体探测系统的角度接受度被称为摇摆曲线,并已被证明具有微弧度角灵敏度。这一信息在*检测吸收和透射的普通和增强x射线中丢失。Arfelli等人使用Levovist和Optison微泡,由于其气/水界面,确立了微泡作为可行的DEI分散剂。在Faulconer等人**近的一项研究中,脂质包被的全氟碳微泡也被证明是候选的DEI造影剂,较大的微泡比较小的微泡提供更高的造影剂。随着进一步的研究,微气泡可能会被优化为更大的DEI散射。组织中的微泡检测可以利用超声介导的微泡破坏。制备超声微泡药物
“主动靶向”一词指的是用特定生物标志物标记的超声微泡,允许它们被驱动到特定的目标。制备超声微泡药物
MRX408已被证明可以提高血栓的可见性,并在体外和体内更好地表征血栓的范围。超声已被证明可以增强溶栓,无论是否添加微泡,通常与静脉绐*溶栓剂结合使用。超声频率为1-2MHz时,已证明有效溶栓并将***相关出血降至**低。靶向微泡或游离微泡可静脉注射或直接进入血栓。超声引导溶栓***背后的机制涉及到微泡本身的机械特性。在低频和高功率下,造影剂会膨胀和收缩,并有可能使血栓破裂。此外,t-PA等溶栓剂可以被纳入气泡中,并在气泡破裂时沉积到血栓中。超声微泡造影剂在*****中的作用。多年来,脂溶性****物已被纳入运载工具,以避免全身毒性。如上所述,现在有可能将疏水剂掺入成像微泡的脂质外层或将亲水分子附着到泡壳上。或者,也可以将疏水*物浸入声活性脂质体(AALs)的油层中。毒性研究表明,与未包封的紫杉醇相比,AAL包封的紫杉醇全身给*可使毒性降低十倍。整合素,尤其是α、β,在血管生成中发挥重要作用,在细胞粘附、细胞迁移和信号转导中发挥作用。Lindner的团队使用亲和素-生物素系统将具有α-integrins高亲和力的单克隆抗体和RGD肽偶联到微泡表面。在小鼠模型中,超声在α-integrins上调的血管生成区域检测到来自这些气泡的更大信号。 制备超声微泡药物