5、技术选择
不同的驱动技术适于不同的任务。
信号是点对点的还是一点对多抽头的?信号是从电路板输出还是留在相同的电路板上?允许的时滞和噪声裕量是多少?作为信号完整性设计的通用准则,转换速度越慢,信号完整性越好。50MHZ时钟采用500PS上升时间是没有理由的。一个2-3NS的摆率控制器件速度要足够快,才能保证SI的品质,并有助于解决象输出同步交换(SSO)和电磁兼容(EMC)等问题。在新型FPGA可编程技术或者用户定义ASIC中,可以找到驱动技术的优越性。采用这些定制(或者半定制)器件,你就有很大的余地选定驱动幅度和速度。设计初期,要满足FPGA(或ASIC)设计时间的要求并确定恰当的输出选择,如果可能的话,还要包括引脚选择。 信号完整性的两个重要推论;多端口矩阵测试信号完整性分析协议测试方法

波形测试
首先是要求主机和探头一起组成的带宽要足够。基本上测试系统的带宽是测试信号带宽的3倍以上就可以了。实际使用中,有一些工程师随便找一些探头就去测试,甚至是A公司的探头插到B公司的示波器去,这种测试很难得到准确的结果。波形测试是信号完整性测试中常用的手段,一般是使用示波器进行,主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。由于示波器是极为通用的仪器,几乎所有的硬件工程师都会使用,但并不表示大家都使用得好。波形测试也要遵循一些要求,才能够得到准确的信号。 信息化信号完整性分析眼图测试克劳德高速数字信号测试实验室信号完整性使用示波器进行波形测试;

比如,在现在常见的高速串行传输链路中,几个吉赫兹(GHz)以上的信号在电路板上 的走线传输,由于本质上电路板上传输线的损耗是随着频率的升高而增大的(在后面的传输 线部分及S参数部分都会有介绍),使得高频分量的损耗大于低频分量的损耗,在接收端收 到的各个频率分量不是原来的样子,使得这些频率分量起来的数字时域信号产生畸变。 所以,在高速串行传输中,会釆用一些信号处理的方法来补偿高频分量比低频分量传输时损 耗大的问题。比如去加重(在发送时人为降低低频分量)和预加重(在发送时人为提高高频 分量)。
根据上述数据,你就可以选择层叠了。注意,几乎每一个插入其它电路板或者背板的PCB都有厚度要求,而且多数电路板制造商对其可制造的不同类型的层有固定的厚度要求,这将会极大地约束终层叠的数目。你可能很想与制造商紧密合作来定义层叠的数目。应该采用阻抗控制工具为不同层生成目标阻抗范围,务必要考虑到制造商提供的制造允许误差和邻近布线的影响。在信号完整的理想情况下,所有高速节点应该布线在阻抗控制内层(例如带状线)。要使SI比较好并保持电路板去耦,就应该尽可能将接地层/电源层成对布放。如果只能有一对接地层/电源层,你就只有将就了。如果根本就没有电源层,根据定义你可能会遇到SI问题。你还可能遇到这样的情况,即在未定义信号的返回通路之前很难仿真或者仿真电路板的性能。数字信号完整性测试进行抖动分析;

信号完整性是许多设计人员在高速数字电路设计中涉及的主要主题之一。信号完整性涉及数字信号波形的质量下降和时序误差,因为信号从发射器传输到接收器会通过封装结构、PCB 走线、通孔、柔性电缆和连接器等互连路径。
当今的高速总线设计如 LpDDR4x、USB 3.2 Gen1/2 (5Gbps/10Gbps)、USB3.2x2 (2x10Gbps)、PCIe 和即将到来的 USB4.0 (2x20Gbps) 在高频数据从发送器流向接收器时会发生信号衰减。本文将概述高速数据速率系统的信号完整性基础知识和集肤效应、阻抗匹配、特性阻抗、反射等关键问题。 提供完整信号完整性测试解决方案;信息化信号完整性分析眼图测试
信号完整性测量和数据后期处理;多端口矩阵测试信号完整性分析协议测试方法
信号完整性 常用的三种测试方法
信号完整性测试的手段有很多,主要的一些手段有波形测试、眼图测试、抖动测试等,目前应用比较的信号完整性测试手段应该是波形测试,即——使用示波器测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
信号完整性的测试手段主要可以分为三大类,下面对这些手段进行一些说明。
抖动测试
抖动测试现在越来越受到重视,因为的抖动测试仪器,比如TIA(时间间隔分析仪)、SIA3000,价格非常昂贵,使用得比较少。使用得*多是示波器加上软件处理,如TEK的TDSJIT3软件。通过软件处理,分离出各个分量,比如RJ和DJ,以及DJ中的各个分量。对于这种测试,选择的示波器,长存储和高速采样是必要条件,比如2M以上的存储器,20GSa/s的采样速率。不过目前抖动测试,各个公司的解决方案得到结果还有相当差异,还没有哪个是或者行业标准。 多端口矩阵测试信号完整性分析协议测试方法
数字信号的时域和频域 数字信号的频率分量可以通过从时域到频域的转换中得到。首先我们要知道时域是真实 世界,频域是更好的用于做信号分析的一种数学手段,时域的数字信号可以通过傅里叶 变换转变为一个个频率点的正弦波的。这些正弦波就是对应的数字信号的频率分量。 假如定义理想方波的边沿时间为0,占空比50%的周期信号,其在傅里叶变换后各频率 分量振幅。 可见对于理想方波,其振幅频谱对应的正弦波频率是基频的奇数倍频(在50%的占空比 下)。奇次谐波的幅度是按1"下降的(/是频率),也就是-20dB/dec (-20分贝每十倍频)。 硬件测试技术及信号完整性分析;校准信号完整性分析配件...