液冷机柜基本参数
  • 品牌
  • 汉和网通
  • 型号
  • 液冷机柜
液冷机柜企业商机

    控制装置与温度传感器以及循环泵05信号连接,用于根据温度传感器检测到的温度调节循环泵05的转速。当主要发热元件021的温度高于合理值时,通过增加循环泵05的转速,增大冷却液的流量,使主要发热元件的温度下降,反之,当主要发热元件021的温度低于合理值时,通过降低循环泵05的转速,减少冷却液的流量,使主要发热元件的温度上升,通过上述控制可以使发热元件工作在一个合理且相对恒定的温度区间上。在一个具体的实施例中,如图1所示,供液管路011位于柜体01的底部,回液管路012位于柜体01的顶部,低温的冷却液从底部进入机柜内,高温的冷却液从顶部流出,针对每一个电子信息设备02,电子信息设备02的后端为进液端023,前端为出液端024,冷却装置包括两个散热器以及与每个散热器连通的流量处理器07,每个散热器包括两个串联连接的液冷板03,即,两个液冷板03串联后再与另两个串联后的液冷板03并联,或者,如图3所示,这几个液冷板03还可以分别并联连接。容器06设置在电子信息设备02的进液端023,导流管路04的一端从容器06中伸出至柜体01的底部,另一端通过流量处理器07与散热器的进液口连通,在循环泵05的作用下,机柜内的低温冷却液通过流量处理器07分配到每个散热器中。液冷机柜的散热模块易于维护,降低故障排查与修复的时间成本。深圳浸没式液冷机柜安装方案

深圳浸没式液冷机柜安装方案,液冷机柜

特别涉及没式液冷机柜。背景技术:微电子芯片技术的快速发展,电子元器件的小型化、集成化的发展趋势,使得芯片组装密度不断提高,组件和设备服务器的热流密度不断加大,如果不采取合理的散热控制技术,将严重影响电子元器件的性能和寿命。目前,计算机服务器芯片散热主要采用风冷冷却技术,即用空气来直接冷却电子设备的发热元器件,利用设备元器件之间的间隙和壳体进行热传导、对流和辐射换热,实现发热元件热量向周围环境散热和冷却的目的,风冷冷却技术一般用于服务器热流密度不高的场所,当服务器热流密度高于80w/cm2,风冷所面临的高能耗,局部热岛效应以及噪音问题将非常明显,产品的可靠性也会进一步降低。浸没式液冷技术是液体冷却中效率较高的冷却方式,主要是将服务器电子元器件浸没在不导电的液体中,热量从发热元器件传到冷却液体,然后利用外部流体循环或者蒸发冷却散热传到外部环境中,从而达到高效冷却的效果。浸没式液冷技术根据选择浸没工质不同,可分为单相浸没和相变浸没两种技术。以水和空气为例,10kw的设备,控制设备温升为10度,则需要空气3250m3/h,冷却水为900l/h,两者体积相差275倍。由此可见,风冷冷却不是比较好选择。深圳浸没式液冷机柜安装方案全浸没式液冷机柜定制厂家。

深圳浸没式液冷机柜安装方案,液冷机柜

    容器06将柜体01进液口一侧温度较低的冷却液与电子信息设备02内温度较高的冷却液进行隔离,导流管路04一端伸至靠近柜体01的进液口一侧,另一端与散热器的进液口连通,在循环泵05的作用下,柜体01内这部分温度较低的冷却液沿管路进入散热器中以冷却主要发热元件021,从散热器中流出的冷却液进入电子信息设备02后与次要发热元件022进行热交换,吸热后的冷却液从电子信息设备02的出液端024流出。为了增强冷却液与次要发热元件022之间的换热效果,散热器的出液口靠近电子信息设备02的进液端023设置,这样,从散热器中流出的冷却液可以从电子信息设备02的进液端023向出液端024流动,冷却液在流动过程中与次要发热元件022进行热交换,增强了换热效果,并避免了电子信息设备02内形成循环死区。同理,当容器06设置在电子信息设备02的出液端024时,容器06的内部空间与电子信息设备02的内部空间连通,容器06将电子信息设备02内温度较低的冷却液与位于柜体01的出液口一侧的温度较高的冷却液进行隔离,导流管路04的一端伸至靠近柜体01的出液口一侧,另一端与散热器的出液口连通,外部低温的冷却液进入柜体01后,首先从电子信息设备02的进液端023流入电子信息设备02内。

    外部低温的冷却液通过进液管路011进入柜体01后,由电子信息设备02的进液端023进入内部,并由进液端023向出液端024流动,在流动过程中,冷却液吸收次要发热元件022产生的热量,在循环泵05的作用下,冷却液进入散热器中再次吸收主要发热元件021产生的热量,***经导流管路04排出至柜体01。参考图4所示的结构(冷却液上进下出形式),在一些机柜中,还可以将容器06设置在电子信息设备02的进液端023,此时,导流管路04的一端从容器06中伸出至柜体01的顶部,另一端通过流量处理器07与散热器的进液口连通,在循环泵05的作用下,机柜内的低温冷却液通过流量处理器07分配到每个散热器中,冷却液吸收主要发热元件021产生的热量后从散热器流出至电子信息设备02内,并再次吸收次要发热元件022产生的热量。从结构上来看,图1、图3、图4所示的这几种机柜中,容器06都靠近柜体01的底部设置,或者说设置在电子信息设备02的后端,这样设置可以不影响电子信息设备02的开关机功能。将容器06设置在电子信息设备02的后端后,为了将电子信息设备02上的线缆引出,容器06的侧壁上设有i/o转接口061,i/o转接口061包括但不限于多个usb接口、rj45接口、c13电源接口。通过以上描述可以看出。液冷机柜的冷却液具备良好的热传导性。

深圳浸没式液冷机柜安装方案,液冷机柜

    通过可视窗可以观察到内箱体内部的状态,实时控制。进一步地,所述外箱体包括底板和侧板,底板和侧板可拆卸连接,侧板铰接可翻转上盖。进一步地,所述内箱体内设置压力监控器。所述内箱体内设置温度监控器。有益效果:本实用新型产热元器件浸没在不导电液体中,不导电液体在螺旋桨装置的搅动下加速流动,促进散热,同时液体上方的冷凝管和风扇组件对液体上方的气体进行散热,两者结合起来显著提高了散热效果。产热元器件之间存在间隙,有利产热元器件和冷却液热交换生成的气泡充分形成和脱离,增强沸腾传热效果,同时便于单个服务器的操作和维护。可兼顾浸没式液冷相变换热和非相变换热机柜,以满足不同冷却液和不同产热元器件之间的换热需求。箱体全密封设计,确保不导电液体不外漏损害其它电子设备和机房环境,同时可减少不导电液体冷媒的消耗。附图说明图1为本实用新型的结构示意图。具体实施方式如图1所示,本实施例的浸没式液冷机柜,包括外箱体1和内箱体2,内箱体2固定在外箱体1内部,内箱体2装有不导电液体,液体内部浸没产热元器件和螺旋桨装置,液面上方、内箱体2内壁上设置冷凝管组3、风扇组件4和电气配件安装过接口5,内箱体2顶部设置可拆卸密封盖6。液冷机柜中的泵浦是冷却液循环的动力源,其性能直接影响整个散热系统的效果。深圳浸没式液冷机柜安装方案

数据存储需求攀升,液冷机柜助力机房高效散热。深圳浸没式液冷机柜安装方案

    多个翅片11沿着基板1的长度方向等距间隔分布,翅片11的厚度小于等于基板1的厚度,其作用与实施例二相同,但翅片11之间有更多间隙,故更利于气流的流通。工作原理与实施例一相同,不再赘述。实施例四:请参阅图7,本发明提供的一种实施例:一种服务器机柜密封水冷系统,包括管路和基板1,管路包括进水管3和出水管4,基板1的两端贯通形成中空管状;管路还包括两个两端贯通形成中空管状的过渡管2,其中一个过渡管2的一端与进水管3固定连接且连通,另一端与基板1的一端固定连接且连通;另一个过渡管2的一端与出水管4固定连接且连通,另一端与基板1的另一端固定连接且连通;基板1、过渡管2、进水管3和出水管4的中空部分各处横截面积均相等;基板1内的中空部分的宽度大于进水管3的直径,基板1内的中空部分的厚度小于进水管3的半径,其作用与实施例一相同。进一步,出水管4的外侧固定设置有多个金属环41,金属环41的孔径等于出水管4的外径,金属环41沿着出水管4等距间隔分布,金属环41能够增大出水管4与空气的接触面积,可以使离开出水管4的热水更快通过空气散热。另外金属环41也可用于其它各实施例中的出水管4外侧。工作原理与实施例一相同,不再赘述。实施例五:请参阅图8。 深圳浸没式液冷机柜安装方案

与液冷机柜相关的**
信息来源于互联网 本站不为信息真实性负责