质量缺陷的根本原因快速分析定位每天每条产线近千个测试结果的原始数据和测试结果的储存,管理和分析基于测试结果数据库的实时趋势分析、热点问题分析,对于产线情况,产品异音异响质量评估和预警。生产下线测试不仅是限值设定和单次测量的评估,而是一套复杂且多部门协同工作的系统。为什么我们需要声学生产下线测试?汽车品质升级虽然可能“发动机的轰鸣声”是部分客户想要的,但齿轮啸叫等异响通常不被客户喜欢。电驱汽车的设计通常为了提供了一种奢华,舒适、安静的驾驶感。异音异响识别通过对样本数据进行特征提取分析,建立若干声学算法模型,设定特征阈值,精细识别异音异响。异响检测检测技术
在车辆或机械系统中,多个部位都可能产生异响,这些异响往往与部件的磨损、松动、损坏或设计缺陷有关。以下是一些容易产生异响检测的主要部位:发动机:发动机是车辆的心脏,其内部包含许多高速旋转和相互摩擦的部件。当气门、汽缸、活塞、曲轴等部件出现故障或磨损时,可能会产生嘶鸣声、爆响、敲击声等异响。高温烧煤声可能表明发动机内部存在燃烧不充分或排气系统问题。传动系统:变速器:变速器在换挡或运行时可能因齿轮磨损、轴承故障等原因产生磨擦声、回转声或滴落声等异响。传动轴和万向节:这些部件在传递动力时,如果润滑不良或磨损严重,也可能产生异响检测。上海质量异响检测供应商家对于机械设备、汽车等长期运行的产品,应定期进行异响检测以预防潜在故障的发生。
空调系统:空调系统的风扇、压缩机、冷凝器等部件在运行时可能会产生噪音异响检测。如果这些部件出现故障或损坏,可能会产生异响。车身及附件:车身结构件、车门、车窗等部件如果松动或损坏,在车辆行驶过程中可能会因振动而产生异响。车辆附件如座椅、安全带等如果安装不当或损坏,也可能产生异响。需要注意的是,不同车辆和机械系统的设计和结构可能有所不同,因此产生异响的部位也可能有所差异。在诊断异响时,需要综合考虑车辆的使用情况、保养记录以及异响的特征和规律等因素。同时,借助专业的检测设备和工具可以更加准确地定位异响源并采取相应的维修措施。
检测原理:利用声学传感器捕捉产品或设备在运行过程中产生的声音信号。对这些声音信号进行频谱分析、时域分析等处理,以识别出异常声音。检测流程:布置测试环境:通常需要布置具有隔声性能的静音箱(也称无响箱),以隔离车间噪声和振动,提供理想的测试环境。信号采集:通过声学传感器(如麦克风)收集产品或设备运行过程中的声音信号。数据采集需要在恰当的位置和条件下进行,以保证获得准确且具有代表性的声音数据。预处理:对收集到的声音信号进行预处理,如滤波、降噪等,以去除不相关的干扰信号,提高信号质量。异响检测设备能够捕捉并分析声音信号,提供详细的声学数据,帮助检测人员准确判断异响的原因。
近年来,声学品质已成为一个日益重要的话题。特别是在汽车行业,在**化产品升级以及向电驱汽车的转型浪潮中,客户的期望从轰鸣的发动机声音逐渐转向安静舒适驾驶体验。因此,不仅在研发阶段,在生产过程中对NVH声学质量、噪音测试、异音测试的要求也越来越高。精心设计的生产下线台架上的EOL声学测试系统可以发现"有异响"的产品,同时又远远不仅限于此。通过基于被测产品的动力流和齿数等机械结构信息进行物理建模,可以将不规则异响噪音定位于特定部件和找到根本原因,从而实现高效维修。异响检测的优势:提高检测效率和准确性,降低成本和人力资源的浪费。可以对检测结果进行记录和分析。上海质量异响检测供应商家
异音异响检测应用场景:家电零部件家电工业零部件生产线在线检测异响冰箱压缩机。异响检测检测技术
传感器部署:在生产线的关键工位和测试站点部署高灵敏度的传感器,如麦克风用于捕捉声音信号,振动传感器和加速度计用于捕捉振动信号。确保传感器的布置能够***、多层次地捕捉产品在工作过程中的微小声音和振动信号。数据采集:通过数据采集设备实时收集传感器捕捉到的声音和振动信号。需要注意的是,采集到的数据可能包含产品的正常工作声音以及生产线的环境噪声,因此需要进行预处理以抑制环境噪声的干扰。信号处理与特征提取:采用数字信号处理技术对采集到的声音和振动信号进行预处理,如滤波、降噪等。通过特征提取方法(如时域分析、频域分析、时频域分析等)从预处理后的信号中提取出能够反映产品状态的特征向量。异响检测检测技术