SuperFluor活化酯(与Invitrogen的AlexaFluor活化酯完全相同)SuperFlour系列荧光探针,具有更强的荧光强度,更广的pH应用范围(pH4~10),更好的抗淬灭性。在生物荧光领域已逐渐替代FITC,Cy3,Cy5,Cy5.5,Cy7等荧光染料。1.标记效率低——计算结果显示每摩尔145,000MW的蛋白标记的荧光团少于4mol有以下原因:1)缓冲液中含有痕量伯铵成分,与染料反应降低了标记效率。如果蛋白已经溶于含氨基的缓冲液(如Tris或氨基乙酸),标记前用PBS透析。2)蛋白含量较低(≤1mg/mL)会影响标记效率。3)标记步骤中加入碳酸氢钠的作用是将反应混合物的pH升高至~8,因为在弱碱性环境中标记反应的效率比较高。如果蛋白溶液的缓冲范围在低pH,加入重碳酸盐也无法将pH调节至**适水平。要么加大重碳酸盐的量,要么将缓冲液换成PBS,或用0.1M碳酸氢钠透析等。4)研究显示pH升至9.0~9.4,标记效率和标记速度(只需10min)明显改善。5)不同抗体与荧光团的反应速率不同,染料标记后保留的生物活性程度也不同,因此标准步骤也不是总有比较好的标记结果。为增加标记率,可以对同一样品进行再标记,或减少蛋白的量加大染料的量重新标记。有研究者在室温孵育1小时后再4℃孵育过夜,情况有所改善。CY7 是一种 CY 染料。CY 为花菁 (Cyanine) 的缩写,是由奇数个甲基单元连接的两个氮原子组成的化合物。新疆ivis荧光染料
所需的CY3-NHS酯的量取决于待标记蛋白的量,以及CY3-NHS的比较好摩尔比为10。示例:假设所需的标记蛋白为500μL2mg/mLIgG(MW=150,000),用100μLDMSO溶解1mgCY3-NHS酯,得到所需的CY3-NHS酯体积为5.05μL,详细计算过程如下:1)mmol(IgG)=mg/mL(IgG)×mL(IgG)/MW(IgG)=2mg/mL×0.5mL/150,000mg/mmol=6.7×10-6mmol2)mmol(CY3-NHS酯)=mmol(IgG)×10=6.7×10-6mmol×10=6.7×10-5mmol3)uL(CY3-NHS酯)=mmol(CY3-NHS酯)×MW(CY3-NHS酯)/mg/μL(CY3-NHS酯)=6.7×10-5mmol×753.88mg/mmol/0.01mg/μL=5.05μL(CY3-NHS酯)4.运行偶联反应1)将室温新鲜制备的10mg/mLCY3-NHS酯缓慢加入到0.5mL蛋白质样品中于溶液中,轻轻摇动混匀,然后短暂离心,将样品收集于反应管底部。请勿混匀,否则2)将反应管安置避光处,在接下来的间隔轻轻蛋白水解60分钟。10-15分钟,轻轻翻转几次以充分混合5.偶联偶联物以下方案是使用SepHadexG-25柱封闭染料-偶联偶联物的范例。1)根据制造说明准备SepHadexG-25柱。2)将反应混合物(来自“Runconjugationreaction”)加载到SepHadexG-25柱的顶部。3)一旦样品在顶部树脂表面下方运行,立即添加PBS(pH7.2-7.4)。4)向所需样品添加更多PBS(pH7.2-7.4)即可完成柱密封。微泡荧光染料IR825Super Flour 系列在生物荧光领域已逐渐替代FITC,Cy3, Cy5, Cy5.5, Cy7等荧光染料。
荧光染料***用于生物学和医学研究中,如流式细胞术、荧光显微镜和免疫组化等,其中荧光淬灭是一个关键的考量因素,因为它直接影响到实验结果的可靠性和准确性。FITC(异硫氰酸荧光素)是一种常用的绿色荧光染料,具有较高的荧光量子产率和激发效率。然而,FITC的一个主要缺点是容易受到环境因素的影响,如pH值、温度、溶剂和离子强度等,从而导致荧光淬灭。此外,FITC的光稳定性相对较低,长时间的光照会导致其荧光强度降低。CY5.5是一种远红外荧光染料,具有较长的激发和发射波长,因此适用于多色荧光标记和深组织成像。CY5.5相对于FITC来说,具有更好的光稳定性,不易受到环境因素的影响。此外,CY5.5的荧光量子产率也较高,使其在荧光标记实验中表现出色。AlexaFluor647是另一种常用的红色荧光染料,具有与CY5.5相似的长波长激发和发射特性。AlexaFluor647的优点是光稳定性较好,可以承受长时间的光照而不易淬灭。此外,它在多种溶剂和pH值范围内都能保持稳定的荧光性能,因此在复杂的生物样本中表现出色。
南京星叶生物科技有限公司Super Fluor系列(效果同Alexa Fluor 系列),质优价廉。
一种发光杂环化合物,存在于生物发光的生物体中,如萤火虫。在含有三磷酸腺苷的情况下,通过荧光素酶氧化脱羧产生光。可用于荧光素酶生物发光成像和细胞高通量筛选应用。D-荧光素(D-Luciferin)是萤火荧光素酶底物,其量子效率为0.88,是Luminol的20倍。反应原理:首先,在镁离子存在下荧光素酶使荧光素与ATP反应,接着它被氧化形成二氧杂环丁烷结构并发出黄绿色的光。Luciferin-luciferase发光用于ATP监控以测定细胞活力以及细菌计数。它还用于报告基因检测。可与小动物***成像系统配套使用,用于标记LUC基因后的体内***荧光检测。D-荧光素游离酸(D-Luciferin,freeacid)、D-荧光素钾盐(D-Luciferin,potassiumsalt)和D-荧光素钠盐(D-Luciferin,sodiumsalt),钾盐、钠盐的形式是**通用的,因为它们都易溶于水。钾盐也是***动物检测使用的主要形式。它们的激发和发射波长分别为328nm和533nm。荧光染料,由于灵敏度高,操作方便,逐渐取代了放射性同位素作为检测标记,其应用于荧光探针,细胞染色等。
在1990年代***使用的绿色荧光蛋白(从水母维多利亚水母克隆)及其衍生物(例如藻红蓝蛋白、藻胆蛋白和藻红蛋白等)是当今生物学研究中**常用的一些生物荧光团。虽然荧光团可用于在细胞、细菌和各种***中表达质粒,但它们的使用有一些缺点,即它可能很耗时,并且在融合时还能够改变某些细胞蛋白的正常生物学功能。此外,与许多其他荧光团相比,生物荧光团的光稳定性和灵敏度较低。绿色荧光蛋白(GFP)绿色荧光蛋白是当下流行的生物荧光团之一,由238个氨基酸组成,其中三个负责发出可见绿色荧光的结构。在水母本身中,荧光团与水母发光蛋白(一种蛋白质)相互作用,当添加钙时会发出蓝光。通过DNA重组,研究人员可以使用负责产生蛋白质的基因来研究给定的基因和蛋白质。在这里,在将复合物插入细胞之前,该基因与另一个基因(负责产生所需蛋白质的第二个基因)结合。如果细胞产生绿色荧光,研究人员就可以明显看出该细胞能够表达目标基因。GFP由488nm激光线激发,可在510nm处检测。来自荧光团的微弱信号可以使用抗GFP抗体放大。作为生物标记物,绿色荧光蛋白用于以下功能:监测各种生理过程*识别蛋白质定位*检测转基因表达Super Fluor 750(效果同Alexa Fluor 750)荧光染料。纳米荧光染料
Super Fluor活化酯(与Invitrogen的Alexa Fluor活化酯完全相同)。新疆ivis荧光染料
InvitrogenCy3染料是一种明亮的橙色荧光染料,可使用532nm激光线激发,并使用TRITC(四甲基罗丹明)滤光片组进行可视化。除了免疫细胞化学应用,Cy3染料通常用于标记核酸。发光说明:Cy3荧光团也是亲脂性神经元和长期DiI细胞追踪试剂的基础,该试剂添加烷基尾(≥12个碳)添加到**荧光团上。Cy3染料是用于成像、流式细胞术和基因组应用的蛋白质和核酸结合物的传统橙色荧光标签。它也是经典亲脂性示踪剂DiI及其变体的基础。根据化学结构,Cy3可分为普通Cy3(常简称Cy3)和磺化Cy3(Sulfo-Cy3)。Cy3水溶性较低,在水相标记反应时常常需要使用有机共溶剂,常用有机溶剂包括DMF,DMSO和乙腈等。磺化Cy3是在Cy3的结构基础上磺化的产物,附带2个或3个磺酸根离子。由于磺化效应,磺化Cy3的亮度比Cy3稍亮,荧光稳定性也提高,可赖受更长时间的曝光。磺化Cy3水溶性极高,所以在标记反应中不需要使用有机共溶剂,特别适合标记蛋白等对有机溶剂敏感的生物分子。另外磺化Cy3水溶性极好,并且染料分子本身带电荷,标记到蛋白表面后不会引发疏水性蛋白聚集,提高荧光标记产物的稳定性。当然,磺化Cy3-NHS也可溶于甲醇,DMSO,DMF等有机溶剂,标记反应也可以在纯有机溶剂中进行。新疆ivis荧光染料