超声微泡相关图片
  • 全氟丙烷超声微泡气泡,超声微泡
  • 全氟丙烷超声微泡气泡,超声微泡
  • 全氟丙烷超声微泡气泡,超声微泡
超声微泡基本参数
  • 品牌
  • 星叶生物
  • 型号
  • 定制
  • 是否定制
超声微泡企业商机

    通过超声微泡诱导空化可以改变**血管和细胞膜的通透性。稳定空化(SC)和惯性空化(IC)都可以对*组织的血管壁和细胞膜造成机械干扰,从而提高EPR在**中的作用。超声作用于含有超声微泡的血管,可改变血管壁的通透性,导致药物外渗至间隙。***通透性的改变取决于多种因素,包括壳成分、气泡大小、***直径与气泡直径之比以及超声参数。除了改变血管壁的通透性外,超声微泡的空化还可以增强细胞膜的通透性。气泡的破裂和相关射流的产生可以瞬间破坏相邻的细胞膜。细胞膜内产生小孔,导致可修复或不可修复的声穿孔。在不同的超声参数下,细胞膜内会产生短暂的孔,外源物质因此可以被运输到细胞质中。超声微泡的崩溃还可以引起**组织中的细胞死亡,这进一步减轻了固体应力,并可以减少更深穿透的障碍。研究表明,空化效应可以通过三种不同的机制改变血管和细胞膜通透性:(1)在SC过程中振荡气泡受到规律的机械干扰时,细胞膜电位发生改变以促进内吞摄取。(2)在从SC到IC的转变过程中,振荡泡的体积发生了变化。血管内皮细胞之间的间隙暂时增加,血管内皮的完整性被破坏,从而增强了活性物质的扩散,活性物质可以进入组织。(3)基于IC产生的声孔作用,血管内皮细胞内产生瞬时孔隙。 这些配体组合的微泡靶向成功地在动脉血管区域积累,但在对照组小鼠中却没有,尽管有高剪切流量。全氟丙烷超声微泡气泡

全氟丙烷超声微泡气泡,超声微泡

微泡表面的加载也可以通过配体-受体相互作用来实现。例如,Lum等人**近报道了一项研究,其中纳米颗粒通过生物素-亲和素连锁结合到外壳上。固体聚苯乙烯纳米颗粒作为模型系统,可以用可生物降解的材料代替装载药物或基因的纳米颗粒。或者,软纳米颗粒,如脂质体,已成功加载到微泡。这些结果提出了一种模块化的加载方法,即首先将***性化合物加载到纳米颗粒室中,然后将其加载到微泡载体上。这种方法提供了一个多功能平台,可以根据特定***剂的疏水性、大小和释放要求进行定制。制备超声微泡外壳超声已被证明可以增强溶栓,超声与微泡结合使用,在溶解血栓方面比单独使用造影剂或超声更成功。

全氟丙烷超声微泡气泡,超声微泡

气泡在靶区域的聚集和药物的释放主要依赖于各种外源性和内源性刺激,并不是由特异性的主动靶向引起的。EPR和血管生成相关表面受体的(过)表达是**血管的关键特征。因此,epr介导的被动靶向和基于配体的主动靶向引起了相当大的关注。Kunjachan等人使用RGD和ngr修饰的聚合物纳米药物对被动和主动**靶向进行了可视化和量化。Wu等人开发了负载紫杉醇和A10-3.2适体靶向的聚(丙交酯-羟基乙酸)纳米泡,可以特异性靶向前列腺*细胞,通过EPR效应和us触发的药物递送持续释放负载的PTX。Li等人报道了使用神经肽YY1受体介导的可生物降解光致发光纳米泡作为UCAs用于靶向乳腺*成像。通过血管靶向实现了超声微泡与**血管的快速有效的早期结合,但随着时间的推移,被动靶向的效率显著提高。这些结果表明,被动靶向和主动靶向的结合是有效的需要有效的**成像和***。

**组织中的生物学改变对纳米微泡的效率起着至关重要的作用。正常组织微血管内皮间隙致密,内皮细胞结构完整,而实体瘤组织新生血管内皮孔在380 ~ 780 nm之间,内皮细胞结构完整性较差。因此,与正常组织相比,一定大小的分子或颗粒更倾向于在**组织中聚集。这种现象被称为EPR (enhanced permeability and retention)效应,被认为是完成**组织被动靶向***的机制。在临床前试验中,与传统化疗相比,基于EPR的药物或基因递送靶向系统在***功效方面取得了显着进展。在过去的几年里,各种基于EPR效应的纳米材料已经被应用,其中纳米级纳米气泡的大小可以根据**血管中孔隙的大小而改变。鉴于不同类型**的内皮细胞中存在不同的间隙大小,因此必须根据**的类别建立合适尺寸的纳米材料。同样,纳米颗粒到达血液循环系统时,生物屏障所产生的阻碍也需要高度重视。因此,考虑到这些挑战,为了更好地利用纳米材料递送中的EPR效应,设计了各种处理方法。基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。靶向超声造影剂的一个潜在应用是用于基因。

全氟丙烷超声微泡气泡,超声微泡

载药超声微泡造影剂的设计之一是使药物由于细胞内pH值的变化或外部光或声音的刺激而释放。修饰超声微泡的一个很有前途的策略是使用电荷可切换的纳米颗粒,这种纳米颗粒可以经历表面电荷从负向正的变化,从而增加细胞的摄取。此外,还可以提出超声微泡的其他刺激响应设计。例如,活性氧(ROS)反应性超声微泡可以被开发用于产生触发药物释放的系统。这是通过将超声微泡与ROS响应材料结合来实现的,其中光或超声介导的ROS产生可以提高超声微泡释放药物的速度。此外,由于***病例中ROS水平升高,超声微泡也可以利用ROS响应荧光探针进行成像或实时监测,以检测富含ROS的病变。超声微泡有效地产生反向散射超声,增强对比度,以便将目标部位(血管)与周围组织区分开来。山东超声微泡全氟丙烷

功率多普勒成像涉及一系列超声脉冲的传输和接收,其中脉冲之间的散射体运动用于检测血流。全氟丙烷超声微泡气泡

超声微泡造影剂的外壳是有脂质组成的,脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂类是一大类化合物,由一个或多个碳氢化合物或碳氟化合物链共价连接到亲水性头基上,通常由甘油主链组成。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂质自发地从可溶性聚集体(即胶束和囊泡)吸附到气液界面,并自组装成单层涂层。在纳米尺度上,分子定向使得疏水尾部面向气相,并通过疏水和分散力相互作用,这可以通过增加或减少链长来调节。低于主相转变温度的脂质形成高度凝聚的壳层。研究发现,增加链长可以降低壳的表面张力,增加表面粘度,气体渗透阻力和屈曲稳定性,从而产生更强健的微气泡。**近的发现已经改变了关于脂质壳结构的主流范式;现在人们认识到它是一个复杂的多相结构。Kim等人的开创性工作表明,脂质壳由由缺陷(晶界)分隔的平面微畴(晶粒)组成,这影响了力学性能。Borden等人的研究还表明,晶界区域是一个**的、更不稳定的相,富含某些单层成分,如脂聚合物,而微畴主要由卵磷脂组成。这两种相都是稳定微泡所必需的。全氟丙烷超声微泡气泡

与超声微泡相关的**
信息来源于互联网 本站不为信息真实性负责