SpeedDP包含如下五个模块:1.数据集管理:采集并制作用于训练和测试的数据集;2.项目配置:根据项目的实际情况,对调整相关配置参数进行定制化开发;3.模型训练:完成训练参数配置,开始模型训练并监控训练过程,损失精度可接受时,暂停训练;4.模型测试:使用数据集或实际业务场景图像视频数据进行模型评估...
成都慧视光电技术有限公司开发的吊舱均搭载了高性能国产化芯片RK3588开发而成的Viztra-HE030图像处理板,这款板卡内部植入了自主研发的智能图像算法,架构更先进,核心数8核(4大4小),算力6.0TOPS,支持丰富的输出接口,同时支持H264、H265两类视频编码。可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。能够让无人机的“眼睛”智能化,让高空目标识别、信息侦查、锁定跟踪成为可能。毫秒级的AI图像标注工具SpeedDP。四川智慧城市AI智能减员增效
AI的不断应用发展使得传统的人工工作的弊端得到了很好的弥补。比如在图像标注这个领域,传统的标注需要招聘大量的人员,并且标注图像所耗费的时间精力也是不可估量的,而AI模型的出现让这一切都成为过去。利用慧视光电打造的深度学习算法开发平台SpeedDP,就能够针对场景识别进行特有的模型部署训练,通过大量的训练,让AI学会自动标注图像。平台采用标准的AI算法开发流程,通过从需求分析、数据制作到模型训练、测试验证以及模型部署几个主要模块。SpeedDP用于模型训练和评估测试的数据集是由一系列的图像和标注文件组成的,平台支持多种开源数据格式如VOC和COCO。而目前平台共支持yolox系列和yolov8系列模型用于模型训练(分割任务*支持yolov8模型),通过不断额测试验证,就能够让AI实现海思、RockChip嵌入式硬件平台等模型部署的可视化AI开发功能。贵州算法定制AI智能烟雾识别利用SpeedDP能够实现降本增效。
AI智能化检测是打造领域智慧建设的一大举措。通过在摄像头中植入视觉处理AI图像处理板,定制AI检测算法,就能够实现对物体的质量检测。在智能检测领域,图像处理板的性能和算法的精度则是影响检测效果的关键所在。不同行业的作业环境不同,对于图像处理板的性能需求也就不同。因此,需要根据实际情况选择合适的AI图像处理板。像工业生产中的质量检测,由于工业仪器的精密复杂,就需要高性能的AI图像处理板,通过大算力实现快速数据处理。成都慧视开发Viztra-HE030图像处理板就十分合适,工业级芯片RK3588的加持下,至高输出6.0TOPS的算力,足以满足工业检测需求。
水上交通是我国内陆运输的一大命脉,尤其是长江沿岸,从长江一路向东走向世界是比较经济的运输模式,为了保障水路运输的通畅,维护通航秩序,就需要相关部门对航道进行定期巡航,保障水上交通安全。传统的航道巡查采用的是人工巡检,每段航道每个航标都要靠人力驱动船只到达目标区域进行巡查,这种模式不仅效率低下,遇到极端天气时,还会出现视野受阻、爬标困难等问题,甚至可能对巡检人员人身安全造成威胁。如今,随着无人机的使用,整个流程变得更加简洁高效,以前需要1条船、6个人做的工作,现在只需要1台电脑、1名工作人员就可以完成。现如今机器人技术已经成为科技领域前沿的技术。
从2016年12月11日起,我国就正式施行林河长制。其中林长制主要职责是林业生态保护修复、森林防火、林业有害生物防治、森林资源管护以及野生动植物保护工作。而河长制是保护水资源,打造安全用水环境。这两项工作对我国的自然生态的稳定具有关键作用。在中西部许多地区,由于环境下复杂,对于林、河的巡护是一项困难的工作,不仅要花费大量的时间精力,还不能做到大面积的覆盖。随着无人机的落地应用,这种困难得到了有效缓解。无人机“加持”下的林河长巡查,形成了“人防+技防”的地空巡检新模式,覆盖更广、发现更及时。无人机凭借其灵活、轻巧的特点可以轻松飞越一些人无法到达的地点,还能够实时传输高清图像数据,节约时间成本,快速高效地获取资料,让管理人员对森林植被、河湖状况一目了然。人工智能和机器学习在建筑领域的优势之一是能够自动执行某些任务。陕西深度学习AI智能处理板
标注需要大量人工劳动一直是采用计算机视觉的主要障碍之一。四川智慧城市AI智能减员增效
图像标注就是给图像打上标签标记,例如矩形框等形式,在以前,需要招聘专门的图像标注师,随着AI的不断发展,这个行业正发生翻天覆地的变化。人工智能利用计算机和机器模仿人类思维来解决问题或制定决策。深度学习是人工智能的子领域,深度学习算法模型由神经网络组成。通过学习样本数据的特征表达以及数据分布来实现能够像人一样具备分析和识别目标的能力。目前,有许多功能性AI工具可以帮助我们进行图像标注,有的是纯手动拉框,有的则可以帮助我们进行自动标注。四川智慧城市AI智能减员增效
SpeedDP包含如下五个模块:1.数据集管理:采集并制作用于训练和测试的数据集;2.项目配置:根据项目的实际情况,对调整相关配置参数进行定制化开发;3.模型训练:完成训练参数配置,开始模型训练并监控训练过程,损失精度可接受时,暂停训练;4.模型测试:使用数据集或实际业务场景图像视频数据进行模型评估...
边海防视频压缩与传输解决方案
2024-11-30云南安保视频压缩与传输解决方案
2024-11-30陕西耐用图像处理板
2024-11-30贵州慧视光电AI智能图像处理
2024-11-30研发图像识别模块自动识别
2024-11-30湖北定制AI智能服务商
2024-11-30数据图像处理板解决
2024-11-30贵州AI智能智慧眼
2024-11-30山西监控视频压缩与传输不降低画质
2024-11-30