单击View Topology按钮进入SigXplorer拓扑编辑环境,可以按前面161节反射 中的实验所学习的操作去编辑拓扑进行分析。也可以单击Waveforms..按钮去直接进行反射和 串扰的布线后仿真。
在提取出来的拓扑中,设置Controller的输出激励为Pulse,然后在菜单Analyze- Preferences..界面中设置Pulse频率等参数,
单击OK按钮退出参数设置窗口,单击工具栏中的Signal Simulate进行仿真分析,
在波形显示界面里,只打开器件U104 (近端颗粒)管脚上的差分波形进行查看, 可以看到,差分时钟波形边沿正常,有一些反射。
原始设计没有接终端的电阻端接。在电路拓扑中将终端匹配的上拉电阻电容等电路 删除,再次仿真,只打开器件U104 (近端颗粒)管脚上的差分波形进行查看,可以看到, 时钟信号完全不能工作。 DDR3一致性测试是否对不同厂商的内存模块有效?辽宁DDR3测试一致性测试
有其特殊含义的,也是DDR体系结构的具体体现。而遗憾的是,在笔者接触过的很多高速电路设计人员中,很多人还不能够说清楚这两个图的含义。在数据写入(Write)时序图中,所有信号都是DDR控制器输出的,而DQS和DQ信号相差90°相位,因此DDR芯片才能够在DQS信号的控制下,对DQ和DM信号进行双沿采样:而在数据读出(Read)时序图中,所有信号是DDR芯片输出的,并且DQ和DQS信号是同步的,都是和时钟沿对齐的!这时候为了要实现对DQ信号的双沿采样,DDR控制器就需要自己去调整DQS和DQ信号之间的相位延时!!!这也就是DDR系统中比较难以实现的地方。DDR规范这样做的原因很简单,是要把逻辑设计的复杂性留在控制器一端,从而使得外设(DDR存储心片)的设计变得简单而廉价。因此,对于DDR系统设计而言,信号完整性仿真和分析的大部分工作,实质上就是要保证这两个时序图的正确性。辽宁DDR3测试一致性测试DDR3内存的一致性测试是否需要长时间运行?
如果模型文件放在其他目录下,则可以选择菜单Analyze-Model Browser..,在界面里面单击 Set Search Path按钮,然后在弹出的界面里添加模型文件所在的目录。
选择菜单Analyze —Model Assignment..,在弹出的模型设置界面中找到U100 (Controller)来设置模型。
在模型设置界面中选中U100后,单击Find Model...按钮,在弹出来的界面中删除 工具自认的模型名BGA1295-40,将其用“*”取代,再单击空白处或按下Tab键,在列岀的 模型文件中选中。
单击Load按钮,加载模型。
加载模型后,选择文件下的Controller器件模型,然后单击Assign 按钮,将这个器件模型赋置给U100器件。
那么在下面的仿真分析过程中,我们是不是可以就以这两个图中的时序要求作为衡量标准来进行系统设计呢?答案是否定的,因为虽然这个时序是规范中定义的标准,但是在系统实现中,我们所使用的是Micron的产品,而后面系统是否能够正常工作要取决干我们对Micron芯片的时序控制程度。所以虽然我们通过阅读DDR规范文件了解到基本设计要求,但是具体实现的参数指标要以Micron芯片的数据手册为准。换句话说,DDR的工业规范是芯片制造商Micron所依据的标准,而我们设计系统时,既然使用了Micron的产品,那么系统的性能指标分析就要以Micron的产品为准。所以,接下来的任务就是我们要在Micron的DDR芯片手册和作为控制器的FPGA数据手册中,找到类似的DDR规范的设计要求和具体的设计参数。是否可以在运行操作系统时执行DDR3一致性测试?
为了改善地址信号多负载多层级树形拓扑造成的信号完整性问题,DDR3/4的地址、控制、命令和时钟信号釆用了Fly-by的拓扑结构种优化了负载桩线的菊花链拓扑。另外,在主板加内存条的系统设计中,DDR2的地址命令和控制信号一般需要在主板上加匹配电阻,而DDR3则将终端匹配电阻设计在内存条上,在主板上不需要额外电阻,这样可以方便主板布线,也可以使匹配电阻更靠近接收端。为了解决使用Fly-by拓扑岀现的时钟信号和选通信号“等长”问题,DDR3/4采用了WriteLeveling技术进行时序补偿,这在一定程度上降低了布线难度,特别是弱化了字节间的等长要求。不同于以往DDRx使用的SSTL电平接口,新一代DDR4釆用了POD电平接口,它能够有效降低单位比特功耗。DDR4内存也不再使用SlewRateDerating技术,降低了传统时序计算的复杂度。在DDR3一致性测试期间能否继续进行其他任务?辽宁DDR3测试一致性测试
DDR3内存的一致性测试是否会降低内存模块的寿命?辽宁DDR3测试一致性测试
所示的窗口有Pin Mapping和Bus Definition两个选项卡,Pin Mapping跟IBIS 规范定义的Pin Mapping 一样,它指定了每个管脚对应的Pullup> Pulldown、GND Clamp和 Power Clamp的对应关系;Bus Definition用来定义总线Bus和相关的时钟参考信号。对于包 含多个Component的IBIS模型,可以通过右上角Component T拉列表进行选择。另外,如果 提供芯片每条I/O 口和电源地网络的分布参数模型,则可以勾选Explicit IO Power and Ground Terminals选项,将每条I/O 口和其对应的电源地网络对应起来,以更好地仿真SSN效应,这 个选项通常配合Cadence XcitePI的10 Model Extraction功能使用。辽宁DDR3测试一致性测试
有其特殊含义的,也是DDR体系结构的具体体现。而遗憾的是,在笔者接触过的很多高速电路设计人员中,很多人还不能够说清楚这两个图的含义。在数据写入(Write)时序图中,所有信号都是DDR控制器输出的,而DQS和DQ信号相差90°相位,因此DDR芯片才能够在DQS信号的控制下,对DQ和DM信号进行双沿采样:而在数据读出(Read)时序图中,所有信号是DDR芯片输出的,并且DQ和DQS信号是同步的,都是和时钟沿对齐的!这时候为了要实现对DQ信号的双沿采样,DDR控制器就需要自己去调整DQS和DQ信号之间的相位延时!!!这也就是DDR系统中比较难以实现的地方。DDR规范这样做的原因很简单,是要把逻辑设...