基于碱性氨基酸的阳离子脂质体已被研究其增强血清中阳离子脂质体稳定性的潜力。对赖氨酸化胆固醇、组氨酸化胆固醇和精氨酸化胆固醇进行了检测, 赖氨酸化胆固醇和精氨酸化胆固醇脂基阳离子脂质体在含血清培养基中表现出 更有效的转染质粒DNA。精胺与胆固醇或长链碳氢化合物的偶联物已配制成脂质体。 将精氨酸标记的阳离子脂质和DOPE(1:1比例)与EGFP编码质粒DNA或RNA复配,电脉冲注入未成熟树突状细胞或树突状细胞前祖细胞。将核酸脉冲树突状细胞静脉注射到荷瘤小鼠体内,可诱导产生抗肿瘤细胞因子,提示阳离子脂质体 可用于生成核酸脉冲树突状抗**疫苗。PAMAM树状大分子偶联,与DOPE(1:1)混合形成脂质体具有细胞核靶向功能。绿色荧光脂质体载药脂质
脂质体各组分对核酸递送效率的影响对于使用阳离子脂质体开发核酸***剂,一个先决条件是必须将核酸适当地递送到靶细胞并到达适当的亚细胞区室(例如,细胞质或细胞核)。已知阳离子脂质体的递送效率会受到阳离子脂质和辅助脂质类型及其组成的影响。阳离子脂质是纳米粒子的**成分,具有一个带正电的头基和一个或两个由碳氢链或类固醇结构组成的疏水尾区的共同结构。Felgner和同事报道了N-[1-(2,3-二聚氧基)丙基]-N,N,N-三甲基氯化铵(DOTAP)的合成,其具有一个单价阳离子头和两个碳氢化合物尾部,并用于制备小的单层脂质体。他们将DNA包裹的脂质体转染到小鼠L细胞中,并证明阳离子脂质中和了带负电荷的DNA,使阳离子脂质体有更好的机会与带负电荷的细胞膜相互作用。从那时起,各种阳离子脂质和基于脂质的纳米颗粒被设计和评估用于核酸的细胞递送,包括DNA,siRNA,miRNA和AS-ODN。这些新的阳离子脂质已经通过文库技术和基于理性的预测相结合的方法被鉴定出来。对类脂类材料文库的筛选产生了由十个碳和两个烷基链组成的阳离子脂质,发现其比其他候选物更有效。
大连脂质体载药试剂质粒DNA要在细胞内被有效地翻译,质粒DNA必须经过有效的细胞内运输进入细胞质,并从细胞质进入细胞核。
脂质体中的点击反应**近,利用巯基炔“点击”化学筛选了一种仿生硫醚脂质文库,该文库将阳离子硫醚胺脂质与两种疏水烷基硫醇偶联。一种含有DOPE的脂质制剂被发现可以增加各种细胞类型中GFP特异性siRNA的摄取。由于阳离子脂质体通常表现出相对较高的细胞毒性,因此人们提出了各种策略来降低其毒性并增强其在体内对siRNA的递送。为此,研究人员将无毒且可生物降解的阴离子聚合物包覆在阳离子脂质体上,如聚l-谷氨酸钠盐、聚(丙烯酸)钠盐、葡聚糖硫酸钠盐、海藻酸钠盐、透明质酸钠盐、硫酸肝素钠盐和羧甲基纤维素钠盐。在这些阴离子聚合物中,聚谷氨酸在大范围内没有任何明显的毒性,并且与未包被的脂质体相比,包被的阳离子脂质体在肝脏和肺组织中的siRNA递送增强。
载药脂质体在体内的行为主要受囊泡的吸收、分布和消除等各种药动学参数的影响。此外,这可能通过避免药物泄漏来提高脂质体的稳定性,并增加脂质体在体内的滞留。就药物的全身可用性而言,脂质体的位点特异性或靶向递送可能更有利。使用靶向递送,与其他组织中的药物浓度相比,可以在特定部位获得大量药物。靶组织可获得的脂质体包裹药物的量和速度决定了药物的**终生物利用度。 由此决定了药物的发作、持续时间和程度作用取决于药物从靶部位(组织)脂质体释放的速度和程度。一些常用于标记脂质体的荧光染料包括:DiO、DiI、Rhodamine PE、NBD、BODIPY、Cy3和Cy5等。
脂质体制备方法:破碎技术尺⼨和尺⼨分布是脂质体性能和安全性的关键属性。有⼏种⽅法可⽤于减少脂质体的尺⼨,如(超)超声(通过浴或探针),挤压,均质,或组合⽅法,如冻融挤压,冻融超声和⾼压均质挤压技术。在这些技术中,挤压和⾼压均质(HPH)是在制药制造中**常⽤的技术。⼤尺⼨的脂质体通过聚碳酸酯膜(50nm~5µm)成为粒径分布精细的较⼩的脂质体。众所周知,商业化的纳⽶脂质体产品,包括Onivyde、Vyxeos、Marqibo等,都是采⽤这种⽅法进⾏⽣产的。该⽅法相对简单,重现性好,只需要适中的条件。尺⼨减⼩的潜在机制是MLV在膜孔⼊⼝处破裂,并在膜通过过程中重新排列。关键的⼯艺参数,如聚碳酸酯膜的孔径、通过循环次数、压⼒和流速等,都可以影响脂质体的⼤⼩和⽚层性。Ong等⼈发现,在⽐较其他不同的纳⽶化技术(包括冻融超声、超声和均质化)时,挤出是***的技术。然⽽,挤压可能会降低脂质体的包封性并改变不对称脂质体的结构。HPH⽤于⽣产各种纳⽶制剂,如脂质体、纳⽶晶体和纳⽶乳液。它既适⽤于⽔体系,也适⽤于⾮⽔体系,并提供不同的⽣产规模,从容量为10L/h的实验室规模到容量为10万L/h的⼤型⽣产规模。相变温度对脂质体的影响。大连脂质体载药试剂
载药脂质体可以采用超滤法、凝胶过滤法、低速离心法、透析法等多种方法来纯化。绿色荧光脂质体载药脂质
基于药代动⼒学机制和脂质体性质,脂质体的质量控制通常包括粒径和粒径分布、形态、层状结构、表⾯性质(zeta电位、PEGlated厚度和靶分⼦,如配体)、脂膜相变温度、载药效率、释放速率等。例如,脂质体的⽚层结构会影响药物的释放速度,⽽形态会影响脂质体在体内的循环时间。
健康组织和**组织之间的血管系统差异使EPR效应得以实现。反过来, 由于不太完美的细胞填充导致更多的泄漏性质, 血管在细胞中具有较大的间隙。 因此,脂质体通过逃离血管的被动靶向效应在**中积累。对几种不同**的被动靶向是由体内脂质体的大小和稳定性决定的。这可归因于它们的小尺寸延长了循环时间并在组织中外渗。因此,考虑到各种脂质体药理学研究的报告数据,可以得出结论,较小的脂质体有更多机会逃脱RES系统的非特异性摄取。 绿色荧光脂质体载药脂质