脂质体成功降低了绿色荧光蛋白(GFP)的表达,并在H4II-E和HepG2细胞中显示出较低的细胞毒性。在其他研究中,精氨酸衍生物N,N-distearyl-N-methyl-N-2-(N’-arginyl)aminoethylammoniumchloride被用于阳离子脂质体与胆固醇的配制。将这些离子脂质体与c-MycsiRNA络合,并静脉注射给B16F10黑色素瘤小鼠(1.2mg/kg,每天1次,连续3天),导致B16F10**对紫杉醇增敏。另一项研究建议使用精氨酸基DiLA2脂质作为载脂蛋白b特异性siRNA递送的阳离子脂质体组分。经小鼠静脉给药(ED50,0.1mg/kg)后,DiLA2和DOPE制备的阳离子脂质体显示出抑制肝脏载脂蛋白BmRNA表达的潜力。单次全身给药后,在给药后第2天观察到目标mRNA水平的比较大减少(约80%),并且目标mRNA的减少持续到给药后第9天。胆固醇衍生物阳离子脂质DMHAPC-Chol,并表明其可促进血管内皮生长因子(VEGF) 特异性sirna进入肿瘤细胞。纳米脂质体载药价格
脂质体核酸疫苗的稳定性和储存性脂质纳米颗粒-mrna制剂的储存条件是其临床转化的重要考虑因素,因为储存(水、冷冻和冻干储存)和冷冻保护剂(蔗糖、海藻糖或甘露醇)的类型会影响脂质纳米颗粒-mrna制剂的长期稳定性168。例如,将5%(w/v)的蔗糖或海藻糖添加到脂质纳米颗粒-mRNA配方中,储存在液氮中,可以维持mRNA在体内至少3个月的递送效率168。值得注意的是,授权的COVID-19mRNA疫苗都是在蔗糖存在的冷冻条件下储存17。mRNA-1273保存在-15°C至-20°C,解冻后直接注射17,而BNT162b2保存在-60°C至-80°C,注射前需要解冻和生理盐水稀释17。**近,根据新的稳定性数据,欧洲药品管理局(EMA)已批准BNT162b2在-15°C至-25°C下储存2周。尽管冷链运输可以维持疫苗活性,但不需要冷藏或冷冻储存的脂质纳米颗粒-mrna制剂的开发不仅可以降低生产和运输成本,还可以加快疫苗接种过程。因此,研究影响脂质纳米颗粒-mrna配方长期储存的因素是很重要的。吉林厂家脂质体载药脂质体中的相变温度是指脂质双分子层中脂质分子从一个状态转变为另一个状态所需的温度。
脂质体靶向递送中RGD配体修饰尽管阳离子脂质体具有在体内递送核酸的潜力,但其递送到特定靶点仍然是一个主要挑战。为了增强携带核酸的阳离子脂质体在靶组织中的分布,研究人员用多肽和小分子修饰了脂质体表面。例如,研究了Arg-Gly-Asp(RGD)肽修饰的脂质体增强核酸向整合素受体表达细胞传递的能力。负载P糖蛋白特异性siRNA的RGD修饰阳离子脂质体对整合素受体表达的人乳腺*MCF7/A细胞的递送率更高,导致P糖蛋白的***沉默。与此一致的是,分子成像显示,与小鼠模型的邻近正常组织相比,MCF7/A**组织中RGD修饰的阳离子脂质体和siRNA的分布更高。在**近的一项研究中,用环RGD和辛精氨酸修饰脂质体表面,以利用环RGD的整合素受体结合效应和辛精氨酸的细胞穿透效应。双配体修饰的阳离子脂质体增加了整合素avb3表达细胞的细胞摄取,并且更有效地转染荧光素酶编码质粒DNA。
1脂质体结构
脂质体根据室室结构和层状结构可分为单层囊泡(ULVs)、寡层囊泡(OLVs)、多层囊泡(MLV)和多泡脂质体(MVLs)。OLVs和MLV呈阴离⼦样结构,但分别存在2-5和>5个同⼼脂质双分⼦层。与MLV不同,MVLs包括数百个由单层脂质膜包围的⾮同⼼⽔室,并呈现蜂窝状结构。根据颗粒⼤⼩,ULVs可进⼀步分为⼩单层囊泡(SUVs,30-100nm)、⼤单层囊泡(LUVs,>100nm)和⼤单层囊泡(LUVs,>1000nm)。Arikaye(阿⽶卡星脂质体吸⼊悬浮液)因其⼤粒径(200-300nm)⽽被认为是LUV。Vyxeos(注射⽤柔红霉素:阿糖胞苷脂质体)是⼀种双层脂质体系统(,它是在第⼀次药物阿糖胞苷装载过程中产⽣的。内部⽚层形成的机制被解释为脂质双层的热⼒学响应,以减少脂质体的表⾯积体积⽐,这是由于⽔的流出⽽引起的,以应对外部渗透挑战。Myocet(阿霉素脂质体)和Mepact(⽶法莫肽脂质体粉剂⽤于浓缩分散输注)为MLV。丰富的⽚层为亲脂化合物的包封提供了较⼤的空间。直径为微⽶的产品有Mepact、DepoCyt(阿糖胞苷脂质体混悬液)、DepoDur(硫酸**缓释脂质体注射液)和expel(布⽐卡因脂质体注射混悬液)四种。Mepactis为⽆菌冻⼲饼,⽤0.9%的⽣理盐⽔溶液重构后,会形成粒径为2.0-3.5µm的多层脂质体。 PAMAM树状大分子偶联,与DOPE(1:1)混合形成脂质体具有细胞核靶向功能。
阴离子脂体由带负电荷的脂质组成,如磷脂酰甘油、磷脂酰丝氨酸和磷脂酸,由于它们被巨噬细胞摄取,循环时间缩短。带负电的小脂质体比其对应的中性和带正电的脂质体被***得更快。此外,在带负电荷的小脂质体中观察到一种双相***模式。 另一方面, 与中性和带正电的脂质体相比, 血液单核细胞和肺在带负电的大脂质体的摄取中起主要作用。表面修饰的脂质体(携带配体)比天然脂质体更容易被***。 然而, 脂质体通过掺入胆固醇可在一定程度上减少肝脏对脂质体的摄取, 这可能会使磷脂包装转变为更坚硬有序的膜。增强成像性能,荧光标记的定量分析,探索药物的药代动力学以及研究药物的靶向性等。微流控脂质体载药核酸
一种含有DOPE的脂质制剂被发现可以增加各种细胞类型中GFP特异性siRNA的摄取。纳米脂质体载药价格
利用设计的脂质,他们发现由1,2-二油醇-3-二甲基氨基-丙烷(DODMA)阳离子脂质组成的核酸脂质颗粒在小鼠和食蟹猴中分别以0.01mg/kg和0.3mg/kg的剂量包封siRNA时表现出基因沉默作用。**近的一项构效关系研究表明,脂质结构的细微差异可能导致转染效率的明显差异。作者设计并合成了1,4,7,10-四氮杂环十二烷环基和含咪唑的阳离子脂质,它们具有不同的疏水区域(例如,分别为胆固醇和双薯蓣皂苷配基)。结果表明,这两种阳离子脂质在HEK293细胞中诱导有效的基因转染。纳米脂质体载药价格