载药超声微泡造影剂另一种选择是通过赋予超声微泡生物启发策略,其中天然细胞膜可以用作构建超声微泡的材料。天然细胞膜具有固有的合适特性,如生物相容性、免疫逃逸、自我识别和主动靶向特性。已有研究表明,血小板生物纳米微泡对血管损伤具有优越的靶向能力,可用于超声造影成像。另一种可用于靶向***的候选细胞是白细胞或巨噬细胞,因为它们具有可以特异性结合***斑块中VCAM-1受体的表面蛋白。为了增强细胞膜的降解,可以将超声微泡与光热剂结合,从而随着温度的升高,增加了现场降解的速度,从而提高了药物在病变部位的释放速度。超声微泡的壳体类型的变化会影响所产生气泡的厚度、刚度和耐久性。载药超声微泡小动物
在移植模型中,将抗icam -1抗体包被的微泡给予异位心脏移植大鼠,成功地在心脏环境中使用了icam -1靶向微泡。排斥心脏的靶向微泡对比强度几乎比非排斥对照高一个数量级。与移植排斥成像相比,一项更为***的临床任务是确定在到达急诊室时经历暂时胸痛的患者是否发生了短暂性心肌缺血事件并随后得到解决。用于该试验的一种有用的分子显像剂可以检测短暂性缺血心肌组织中内皮细胞上调的p选择素或e选择素。所谓的“缺血记忆剂”是通过链亲和素-生物素连接将抗p -选择素抗体或SialylLewisx放在微泡壳上制备的。在遭受短暂(10至15分钟)血管闭塞的大鼠中,再灌注溶解一小时后注射碳水化合物修饰剂,观察到超声后向散射信号与非缺血区域相比增强了几倍。50在该模型中,没有发生梗死,但缺血确实导致血管内皮活化。在短暂(闭塞10分钟)缺血小鼠心肌中也观察到类似的结果。在给予抗p -选择素抗体靶向泡后,心脏缺血区域的超声造影增强与对照组非缺血区域的信号有统计学差异。合成超声微泡显影将靶向成像方式与病变定向相结合,可以确定与积极反应可能性有关的几个生物学相关事实。
微泡空化时细胞膜和血管通透性的变化。电子显微镜已经证明,在细胞膜内产生的小孔与微泡的崩溃和射流的产生有关。根据超声参数,细胞膜内产生的孔隙可能是短暂的,导致细胞死亡或成功地将外源物质引入细胞质。除了改变细胞膜通透性外,将超声应用于含有微泡的小血管还能改变血管壁的通透性,导致颗粒外渗到间隙。这种***通透性的变化取决于泡的大小、壳的组成以及***直径与泡直径的比值。改变超声参数,如声压和脉冲间隔,以及物理参数,如注射部位和微血管压力,可以比较大限度地提高微球的局部药物递送。在超声中心频率为1MHz的情况下,0.75MPa的压力足以在体外大鼠肌肉微循环中产生***破裂。超声脉冲间隔既影响观察到外渗的点数,也影响输送的物质体积,两者在脉冲间隔为5s时均达到比较大值。人们认为,要使输送的物质体积比较大化,需要将微泡补充到脉冲之间的区域。研究还表明,随着***血压的升高,微泡通过***壁的运输也会增加。
超声微泡造影剂的外壳是有脂质组成的,脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂类是一大类化合物,由一个或多个碳氢化合物或碳氟化合物链共价连接到亲水性头基上,通常由甘油主链组成。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂质自发地从可溶性聚集体(即胶束和囊泡)吸附到气液界面,并自组装成单层涂层。在纳米尺度上,分子定向使得疏水尾部面向气相,并通过疏水和分散力相互作用,这可以通过增加或减少链长来调节。低于主相转变温度的脂质形成高度凝聚的壳层。研究发现,增加链长可以降低壳的表面张力,增加表面粘度,气体渗透阻力和屈曲稳定性,从而产生更强健的微气泡。**近的发现已经改变了关于脂质壳结构的主流范式;现在人们认识到它是一个复杂的多相结构。Kim等人的开创性工作表明,脂质壳由由缺陷(晶界)分隔的平面微畴(晶粒)组成,这影响了力学性能。Borden等人的研究还表明,晶界区域是一个**的、更不稳定的相,富含某些单层成分,如脂聚合物,而微畴主要由卵磷脂组成。这两种相都是稳定微泡所必需的。在移植模型中,将抗icam -1抗体包被的微泡给予异位心脏移植大鼠,成功地在心脏环境中使用了icam -1靶向微泡。
组织中的微泡检测可以利用超声介导的微泡破坏。超声压力通常以机械指数(MI)的形式出现在医学成像系统的屏幕上,一个相对商,计算为峰值负声压除以频率的平方根。非线性微泡行为一般在声压较高时表现得更明显(例如MI 0.2)。在某些系统中,它可能是检测到的***机会,例如,较小的微泡。在更高的压力下(MI 0.4和高达1-1.9,取决于频率),微泡被破坏,它们的声学后向散射信号完全消失,这可以提供额外的证据,证明目标造影剂存在于组织中。一些气泡壳(通常是那些涂有薄脂质单层的)是柔韧性的,即使在低压超声(例如MI 0.06)下也会振动。对于厚壳聚合物气泡,除非达到临界压力并且外壳破裂,否则微泡不会振动,并且声回波响应仍然很低。对于壳较厚的气泡,从气泡中产生回声的临界声能更高。如果这些气泡要在患者体内给药后与特定受体结合,就必须将靶向配体附着到微泡壳上。合成超声微泡显影
荧光标记的靶向微泡在非心脏病血管的应用。载药超声微泡小动物
微泡表面选择合适的偶联化学和修饰顺序取决于配体的类型。一个重要的考虑因素是配体的大小及其对生物利用度的影响。小的亲水分子,如代谢物和肽,可以直接偶联到聚合物间隔物上,而不会***影响聚合物动力学。相比之下,大的蛋白质配体,如抗体,由于剪切应力和涉及微泡分散的有机溶剂,容易变性。因此,抗体(~120 kDa)通常通过生物素-亲和素连接连接到预形成的微泡表面。所得到的复合物更像一个刚性支架,而不是一个自由的聚合物链(50),配体与聚合物刷(~5 kDa)被大块的亲和素分子(~60 kDa)很好地分离。载药超声微泡小动物