物联网技术应用到楼宇自控系统的趋势不仅要求系统集成商提供标准的协议接口以及与其他应用的开放集成,还要求他们不断完善和开发统一平台,以提供更好的集成解决方案。“互联网”概念提出后,4月17日,国家能源局在能源互联网工作会议上表示,即将制定国家能源互联网行动计划。能源互联网蓄势待发,为智能建筑行业紧随国家脚步指明了发展方向。智能建筑将成为能源互联网中相当有想象力的部分。智慧建筑与能源互联网的结合,将使建筑能源管理更加“主动”。楼宇自控优化设备的维护,延长设备使用寿命,节省费用。绍兴液压楼宇自控方案
系统设计-深化设计 楼控系统深化设计是一个复杂的过程。它分为施工图的绘制,施工技术交底以及需要和强电专业配合解决的问题。其中施工图的设计又分为平面施工图的设计和控制箱芯制作图的设计。 在初步设计的基础上,仔细核对被控设备的种类、数量及控制原理,对需要集成机电设备控制柜及系统进行接口的二次确认。给出Z终的BAS设备清单、系统图及施工图平面图。 设计依据 建筑专业提供的建筑图纸 暖通专业提供的空调系统资料 给排水专业提供的图纸 电气专业提供的图纸 《智能建筑设计标准》(GB50314-2015) 《民用建筑供暖通风与空气调节设计规范》(GB50736-2012) 《建筑设计防火规范》(GB50016-2014)(2018年版) 《民用建筑电气设计规范》(JGJ16-2008)杭州智能楼宇自控软件楼宇自控助力节能减排与降本增效。
楼宇自控主要子系统包括:冷热源系统、空调新风系统、照明系统、给排水系统、电梯系统、变配电系统、风机盘管系统。楼宇自控子系统介绍1)冷热源系统-冷源冷源为空调末端提供冷量。主要包含:冷水机组、冷却水泵、冷却塔、冷冻水泵(一次/二次泵)、风冷热泵机组、循环水泵。冷热源系统-热源热源为空调末端提供热量,提供生活热水。主要包含:锅炉、一次侧循环水泵、二次侧循环水泵、换热器。空调新风系统-新风机组新风机组(FAU)是提供新鲜空气的一种空气调节设备,一般不承担空调区域的热湿负荷,主要功能就是送新风。理想状态是送风的温度和湿度恒定,所以新风机组一般控制送风温湿度。
能在Z央站上通过对图形的操作即可对现场设备进行手动控制,如设备的ON/OFF控制;通过选择操作可进行运行方式的设定,如选择现场手动方式或自动运行方式;通过交换式菜单可方便地修改工艺参数。对系统的操作权限有严格的管理,以保障系统的操作安全。对操作人员以通行字的方式进行身份的鉴别和管制。操作人员的根据不同的身份可分为从低到高5—10个安全管理级别。先进的报警功能:当系统出现故障或现场的设备出现故障及监控的参数越限时,均产生报警信号,报警信号始终出现在显示屏Z下端,为声光报警,操作员必须进行确认报警信号才能解除,但所有报警多将记录到报警汇总表中,供操作人员查看。报警共分4个优先级别。报警可设置实时报警打印,也可按时或随时打印。楼宇自控系统通过传感器、控制器等设备,对楼宇内的各种数据进行采集。
当大楼内的一些大型设备出现故障时(如冰箱、新风机、水泵故障,或者阀门堵塞、传感器故障),可能并不是功能完全失常,或有一些异常噪音和现象,但只是能耗急剧增加,或与之相关的某些设备能耗急剧增加。物业人员在日常维护和检查工作中往往很难发现这些问题。通过在线能耗监测,我们可以很容易地发现这些故障设备的能耗变化情况,进而找出其故障,进行维护,避免因设备故障而导致能耗增加。没有数据就没有管理。楼宇自控系统为主管部门公正、量化地衡量每栋建筑的能耗提供了一把“尺子”。楼宇自控系统在电力技术管理中的必要性。中控楼宇自控工程
楼宇自控系统实现了楼宇的高效、节能、安全、舒适的运行状态。绍兴液压楼宇自控方案
流量传感器:常用的是电磁流量计,由法拉第电磁感应定律知,在磁场中运动并切割磁力线的导体中会有感应电动势产生,此感应电动势与流体的体积流量呈线性关系。如果是改造还可以采用超声波流量计,方便安装和维护。湿度传感器:用于测量室内空气相对湿度。液位传感器:用于控制水箱、水池等的上限、下限液位。在自动控制系统中,它接受控制器输出的控制信号,并转换成直线位移或角位移,来改变调节阀的流通截面积,以控制流入或流出被控过程的物料或能量,从而实现过程参数的自动控制。风阀执行器:用于控制安装于新风、回风口的风阀,既可进行开关控制,也可进行开度控制。执行器设有夹具,可直接夹持在风阀的驱动轴上,设有手动复位钮,在故障时可手动调节。根据风管横截面的大小可选择不同钮矩的执行器。绍兴液压楼宇自控方案