微泡的制造通常通过两种通用技术来进行:分散气体颗粒的自组装稳定,以及芯萃取的双乳液制备。第一种技术用于脂质或蛋白质基气泡。气体(溶解度低的空气或氟化气体)分散在含有脂质或表面活性剂胶束混合物或经超声变性的蛋白质的水介质中。这些成分沉积在气液界面上,使其稳定下来。有些微泡制剂在水相中保存数月仍能保持稳定。或者,微泡可以快速冷冻和冻干,以便在干燥状态下延长储存时间。水的加入导致微泡水分散体在使用前立即发生重组。聚合微泡是通过双乳液水-油-水技术制备的,该技术通过高剪切混合或超声在水相中产生有机溶剂微粒。有机“油”溶胶喷口含有溶解的可生物降解聚合物(如聚乳酸-共乙醇酸),以及内部水相的微滴或纳米滴。然后对颗粒进行冻干或喷雾干燥。有机溶剂和水被除去,留下一个内部有空隙的聚合物外壳。通常,加入挥发性化合物,如碳酸氢铵、碳氢化合物、氟碳化合物或樟脑,以帮助在颗粒中产生空心**。这类颗粒在干燥状态下储存时非常稳定。它们在水或生物介质中缓慢水解,形成乳酸和乙醇酸,具有完全的生物相容性。颗粒的壳厚和核大小可以通过聚合物、有机溶剂、内部水和成孔化合物的浓度和比例来控制。基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。肝脏靶向超声微泡气泡
超声微泡作为纳米医学,在医学领域的诊断和***方面具有多方面的优势,目前,超声微泡已发展为多模态造影剂、光热剂和***剂。市面上有各种商用mb造影剂,如Levovist、Definity、option、Sonazoid和Sonovue,具有不同的特性、成分和尺寸变化,范围在1-8µm。例如,Levovist(基于空气填充的半乳糖/棕榈酸mb)可以通过减少噪声信号来改善超声成像,而SonoVue(基于六氟化硫填充的脂质mb)在外周血中高度稳定。在临床前和临床阶段的诊断中,超声微泡作为造影剂与成像仪器相结合,辅助疾病的可视化和表征。这种成像过程被称为分子成像(MI),因为它可以在动物和人类的分子和细胞水平上进行观察。由于MI的非侵入性,它的应用具有附加价值,它为组织表型的检测和评估以及早期疾病提供了实时可视化。更重要的是,MI还可用于分析细胞相互作用和监测***递送情况。为了获得有利的结果,MI需要两个组成部分,即成像仪器和纳米药物。理想情况下,使用的仪器必须是非侵入性的,并且具有高分辨率和灵敏度的能力,可以检测和监测成像剂。肝脏靶向超声微泡气泡如果这些气泡要在患者体内给药后与特定受体结合,就必须将靶向配体附着到微泡壳上。
“主动靶向”一词指的是用特定生物标志物标记的超声微泡,允许它们被驱动到特定的目标。由于抗体-抗原或配体-受体相互作用的特异性,这种策略可以提高MNB递送的效率。可以使用各种配体来提高载药超声微泡对***斑块的靶向效率和特异性结合,如碳水化合物、蛋白质、核酸和多肽。作为配体的抗体由于其特异性而引起了研究人员的兴趣,但需要高成本。因此,需要进一步研究主动靶向超声微泡的表面改性和开发,以降低成本。当超声微泡粒度均匀且不发生聚集时,可以获得良好的超声微泡分布。在颗粒表面添加PEG增加了分布稳定性,从而促进了循环时间,避免了吞噬作用。研究表明,在生理条件下,添加聚乙二醇(4-5%)可提高填充C3F8的脂基mb的寿命和稳定性。用聚乙二醇和pluronic改性并加入互穿交联N,N-二乙基丙烯酰胺(NNDEA)和N,N-双(丙烯基)半胺(BAC)也可以提高交联pluronic-脂-氟碳纳米微泡 (CL-PEG-纳米微泡)的稳定性。而且,使用pluronic来增加磷脂膜的稳定性,还可以减小形成的颗粒的尺寸。CL-PEG-纳米微泡作为造影剂,可以增强回声信号,增加在病变部位的积累和保留能力。因此,CL-PEG-纳米微泡为***的靶向分子成像和进一步发展提供了创新。
***斑块的检测对于*******的发病率和死亡率可能更为重要。由于潜在的炎症,活性斑块区域的内皮细胞被***马托雷过程;因此,内皮细胞中这些位点上的VCAM-1和选择素应该被上调,用抗VCAM-1靶向微泡和抗p-选择素靶向或抗e -选择素靶向泡进行分子成像可能是有用的。在这种情况下,可用的动物模型是高胆固醇饮食的apoE⫺/⫺小鼠。**近,研究人员利用抗vcam -1抗体修饰的生物素化微泡成功靶向了这类小鼠主动脉弓内的斑块。由于大多数单克隆抗体本身可能无法在快速流动条件下靶向微泡,因此在同一链霉亲和素修饰的微泡上结合快速结合的生物素化SialylLewisx聚合物和紧密结合的生物素化抗vcam -1抗体可能会有所帮助。事实上,在高胆固醇饮食的apoE-/-小鼠中,这些配体组合的微泡靶向成功地在动脉血管区域积累,但在对照组小鼠中却没有,尽管有高剪切流量。通过将靶向指定表面标记物的配体附着在载药微泡的外部,可以实现更特异性的药物递送。
超声微泡有效地产生反向散射超声,增强对比度,以便将目标部位(血管)与周围组织区分开来。它还可以比较大限度地减少噪声和背景信号。超声微泡的声学特性产生成像信号,由美国成像仪器检测。使用超声微泡进行诊断的频率范围约为2-18 MHz。共振频率与超声微泡的尺寸成反比,并受超声微泡表面配方特性的影响。超声微泡对波传播幅度的增加具有非线性响应,从而产生谐波频率分量,从而提高了美国成像的空间分辨率。超声微泡被用作造影剂,因为固体和液体颗粒无法提供超声微泡给出的后向散射信号。另一种实时无创成像技术是光声(PA)成像,它需要激光源照射、光敏剂和超声换能器来收集产生的声信号。PA成像是基于热弹性膨胀和造影剂存在下光子到超声转换的光能吸收。PA与超声波相结合,能够以高空间分辨率显示深部组织。Meng等人进行了一项简单的研究,利用超声波将mb转化为纳米颗粒,目的是在小鼠模型的PA成像过程中获得无背景的强信号。超声微泡的广泛应用使研究人员能够调整靶向效率和响应性,例如超声/光热/pH/光触发药物释放。用于输送气体、药物和核酸,这些载体与超声波、光热、pH和光(刺激触发)超声微泡相结合。黑龙江超声微泡报价
超声微泡必须基于受体与配体之间的强亲和力通过鼻内注射和超声应用在计算机屏幕上清楚地观察到生成的图像。肝脏靶向超声微泡气泡
组织中的微泡检测可以利用超声介导的微泡破坏。超声压力通常以机械指数(MI)的形式出现在医学成像系统的屏幕上,一个相对商,计算为峰值负声压除以频率的平方根。非线性微泡行为一般在声压较高时表现得更明显(例如MI 0.2)。在某些系统中,它可能是检测到的***机会,例如,较小的微泡。在更高的压力下(MI 0.4和高达1-1.9,取决于频率),微泡被破坏,它们的声学后向散射信号完全消失,这可以提供额外的证据,证明目标造影剂存在于组织中。一些气泡壳(通常是那些涂有薄脂质单层的)是柔韧性的,即使在低压超声(例如MI 0.06)下也会振动。对于厚壳聚合物气泡,除非达到临界压力并且外壳破裂,否则微泡不会振动,并且声回波响应仍然很低。对于壳较厚的气泡,从气泡中产生回声的临界声能更高。肝脏靶向超声微泡气泡